Edit model card

wav2vec2-xls-r-common_voice-tr-ft-500sh

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5794
  • Wer: 0.4009
  • Cer: 0.1032

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.5288 17.0 500 0.5099 0.5426 0.1432
0.2967 34.0 1000 0.5421 0.4746 0.1256
0.2447 51.0 1500 0.5347 0.4831 0.1267
0.122 68.01 2000 0.5854 0.4479 0.1161
0.1035 86.0 2500 0.5597 0.4457 0.1166
0.081 103.0 3000 0.5748 0.4250 0.1144
0.0849 120.0 3500 0.5598 0.4337 0.1145
0.0542 137.01 4000 0.5687 0.4223 0.1097
0.0318 155.0 4500 0.5904 0.4057 0.1052
0.0106 172.0 5000 0.5794 0.4009 0.1032

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
40
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.