metadata
license: apache-2.0
datasets:
- imagenet-1k
metrics:
- accuracy
tags:
- RyzenAI
- vision
- classification
- pytorch
- timm
MNASNet_b1
Quantized MNASNet_b1 model that could be supported by AMD Ryzen AI.
Model description
MNASNet was first introduced in the paper MnasNet: Platform-Aware Neural Architecture Search for Mobile.
The model implementation is from timm.
How to use
Installation
Follow Ryzen AI Installation to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model.
pip install -r requirements.txt
Data Preparation
Follow ImageNet to prepare dataset.
Model Evaluation
python eval_onnx.py --onnx_model mnasnet_b1_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset
Performance
Metric | Accuracy on IPU |
---|---|
Top1/Top5 | 73.51% / 91.56% |
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@inproceedings{tan2019mnasnet,
title={Mnasnet: Platform-aware neural architecture search for mobile},
author={Tan, Mingxing and Chen, Bo and Pang, Ruoming and Vasudevan, Vijay and Sandler, Mark and Howard, Andrew and Le, Quoc V},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={2820--2828},
year={2019}
}