amauri4 commited on
Commit
aacd386
·
verified ·
1 Parent(s): f7738e8

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/hubert-base-ls960
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: hubert-emotion-classifier-pt-en-v1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hubert-emotion-classifier-pt-en-v1
19
+
20
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7939
23
+ - Accuracy: 0.7505
24
+ - F1: 0.7515
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 8
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 5
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | 1.8613 | 1.0 | 507 | 1.5444 | 0.4191 | 0.3587 |
57
+ | 1.4103 | 2.0 | 1014 | 1.1065 | 0.6509 | 0.6295 |
58
+ | 1.0985 | 3.0 | 1521 | 0.9485 | 0.6903 | 0.6840 |
59
+ | 0.9208 | 4.0 | 2028 | 0.8915 | 0.7061 | 0.7013 |
60
+ | 0.8196 | 5.0 | 2535 | 0.7939 | 0.7505 | 0.7515 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.53.1
66
+ - Pytorch 2.6.0+cu124
67
+ - Datasets 2.14.4
68
+ - Tokenizers 0.21.2