hubert-emotion-classifier-pt-en-v1

This model is a fine-tuned version of facebook/hubert-base-ls960 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7563
  • Accuracy: 0.7781
  • F1: 0.7804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.043 1.0 507 1.8849 0.2732 0.1529
1.8343 2.0 1014 1.6340 0.3609 0.2655
1.6091 3.0 1521 1.4294 0.4862 0.4604
1.382 4.0 2028 1.1935 0.6045 0.5882
1.1837 5.0 2535 1.0617 0.6607 0.6545
1.026 6.0 3042 0.9764 0.6775 0.6753
0.9294 7.0 3549 0.8574 0.7308 0.7311
0.8115 8.0 4056 0.8209 0.7268 0.7257
0.7309 9.0 4563 0.7914 0.7426 0.7437
0.6686 10.0 5070 0.8395 0.7436 0.7404
0.6102 11.0 5577 0.7574 0.7673 0.7703
0.5866 12.0 6084 0.8018 0.7416 0.7440
0.5242 13.0 6591 0.7226 0.7791 0.7817
0.4732 14.0 7098 0.7636 0.7682 0.7723
0.4755 15.0 7605 0.7563 0.7781 0.7804

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2
Downloads last month
5
Safetensors
Model size
94.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for amauri4/hubert-emotion-classifier-pt-en-v1

Finetuned
(104)
this model