hubert-emotion-classifier-pt-en-v1
This model is a fine-tuned version of facebook/hubert-base-ls960 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7563
- Accuracy: 0.7781
- F1: 0.7804
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
2.043 | 1.0 | 507 | 1.8849 | 0.2732 | 0.1529 |
1.8343 | 2.0 | 1014 | 1.6340 | 0.3609 | 0.2655 |
1.6091 | 3.0 | 1521 | 1.4294 | 0.4862 | 0.4604 |
1.382 | 4.0 | 2028 | 1.1935 | 0.6045 | 0.5882 |
1.1837 | 5.0 | 2535 | 1.0617 | 0.6607 | 0.6545 |
1.026 | 6.0 | 3042 | 0.9764 | 0.6775 | 0.6753 |
0.9294 | 7.0 | 3549 | 0.8574 | 0.7308 | 0.7311 |
0.8115 | 8.0 | 4056 | 0.8209 | 0.7268 | 0.7257 |
0.7309 | 9.0 | 4563 | 0.7914 | 0.7426 | 0.7437 |
0.6686 | 10.0 | 5070 | 0.8395 | 0.7436 | 0.7404 |
0.6102 | 11.0 | 5577 | 0.7574 | 0.7673 | 0.7703 |
0.5866 | 12.0 | 6084 | 0.8018 | 0.7416 | 0.7440 |
0.5242 | 13.0 | 6591 | 0.7226 | 0.7791 | 0.7817 |
0.4732 | 14.0 | 7098 | 0.7636 | 0.7682 | 0.7723 |
0.4755 | 15.0 | 7605 | 0.7563 | 0.7781 | 0.7804 |
Framework versions
- Transformers 4.53.1
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.2
- Downloads last month
- 5
Model tree for amauri4/hubert-emotion-classifier-pt-en-v1
Base model
facebook/hubert-base-ls960