Configuration Parsing
Warning:
In adapter_config.json: "peft.base_model_name_or_path" must be a string
π οΈ Mistral-7B AI Tools Explainer (LoRA Fine-tuned)
This model is a fine-tuned version of Mistral-7B using LoRA (Low-Rank Adaptation). It is trained specifically to explain the use, purpose, and functionality of AI tools when given their name, task, and description.
π Model Details
- Developed by:
amalsp
- Model type: Causal Language Model (Decoder-only Transformer)
- Base model:
mistralai/Mistral-7B-v0.1
- Fine-tuning technique: PEFT with LoRA
- Language(s): English
- License: Apache 2.0
- Trained on: 2000 entries about AI tools
- GPU Used: T4 (Colab Pro)
- Training Time: ~2.7 hours
- Loss: 1.83
- Sequence Length: 256 tokens
π Intended Use
β Direct Use
- Generate accurate and informative descriptions of AI tools
- Help end-users, students, or professionals understand what a given AI tool does
π« Out-of-Scope Use
- Not intended for general Q&A about geography, politics, history, or unrelated domains
- Will reply with:
"I am not trained for this."
to unrelated prompts
π‘ Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load model
base = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(base, "amalsp/mistral-7b-ai-tools-finetuned")
tokenizer = AutoTokenizer.from_pretrained("amalsp/mistral-7b-ai-tools-finetuned")
# Generate
prompt = """Tool: ChatGPT
Task: Conversational AI
Short Description: AI chatbot for natural conversations
Explain the tool:"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=300)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 117
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for amalsp/mistral-7b-ai-tools-finetuned
Base model
mistralai/Mistral-7B-v0.1