|
--- |
|
language: |
|
- pt |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- pearsonr |
|
base_model: |
|
- Qwen/Qwen2.5-0.5B-Instruct |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
license: apache-2.0 |
|
--- |
|
|
|
### Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct |
|
#### Introduction |
|
Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct is a Brazilian-Portuguese language model (PT-BR-LLM) developed from the base model Qwen2.5-0.5B-Instruct through fine-tuning, for 2 epochs, with 600k instructions dataset. |
|
Read our article [here](https://arxiv.org/abs/2506.00019). |
|
|
|
## Details |
|
|
|
- **Architecture:** a Transformer-based model with RoPE, SwiGLU, RMSNorm, and Attention QKV bias pre-trained via Causal Language Modeling |
|
- **Parameters:** 0.49B parameters |
|
- **Number of Parameters (Non-Embedding):** 0.36B |
|
- **Number of Layers:** 24 |
|
- **Number of Attention Heads (GQA):** 14 for Q and 2 for KV |
|
- **Context length:** 32,768 tokens |
|
- **Number of steps:** 78838 |
|
- **Language:** Brazilian Portuguese |
|
|
|
#### Usage |
|
|
|
You can use Amadeus-Verbo-FI-Qwen2.5-0.5B-PT-BR-Instruct with the latest HuggingFace Transformers library and we advise you to use the latest version of Transformers. |
|
|
|
With transformers<4.37.0, you will encounter the following error: |
|
|
|
KeyError: 'qwen2' |
|
|
|
Below, we have provided a simple example of how to load the model and generate text: |
|
|
|
#### Quickstart |
|
The following code snippet uses `pipeline`, `AutoTokenizer`, `AutoModelForCausalLM` and apply_chat_template to show how to load the tokenizer, the model, and how to generate content. |
|
|
|
Using the pipeline: |
|
```python |
|
from transformers import pipeline |
|
|
|
messages = [ |
|
{"role": "user", "content": "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana"}, |
|
] |
|
pipe = pipeline("text-generation", model="amadeusai/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct") |
|
pipe(messages) |
|
``` |
|
OR |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "amadeusai/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana." |
|
messages = [ |
|
{"role": "system", "content": "Você é um assistente útil."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
OR |
|
```python |
|
from transformers import GenerationConfig, TextGenerationPipeline, AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
# Specify the model and tokenizer |
|
model_id = "amadeusai/AV-FI-Qwen2.5-0.5B-PT-BR-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
# Specify the generation parameters as you like |
|
generation_config = GenerationConfig( |
|
**{ |
|
"do_sample": True, |
|
"max_new_tokens": 512, |
|
"renormalize_logits": True, |
|
"repetition_penalty": 1.2, |
|
"temperature": 0.1, |
|
"top_k": 50, |
|
"top_p": 1.0, |
|
"use_cache": True, |
|
} |
|
) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
generator = TextGenerationPipeline(model=model, task="text-generation", tokenizer=tokenizer, device=device) |
|
|
|
# Generate text |
|
prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana" |
|
completion = generator(prompt, generation_config=generation_config) |
|
print(completion[0]['generated_text']) |
|
``` |
|
|
|
#### Citation |
|
|
|
If you find our work helpful, feel free to cite it. |
|
``` |
|
@misc{Amadeus AI, |
|
title = {Amadeus Verbo: A Brazilian Portuguese large language model.}, |
|
url = {https://amadeus-ai.com}, |
|
author = {Amadeus AI}, |
|
month = {November}, |
|
year = {2024} |
|
} |
|
``` |