Edit model card

BERT-Base-SE2025T11A-eng-v0.5

This model is a fine-tuned version of bhadresh-savani/bert-base-uncased-emotion on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3877
  • F1 Micro: 0.7444
  • F1 Macro: 0.7028
  • F1 Label Anger: 0.5570
  • F1 Label Fear: 0.8087
  • F1 Label Joy: 0.6915
  • F1 Label Sad: 0.7317
  • F1 Label Surprise: 0.725

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro F1 Label Anger F1 Label Fear F1 Label Joy F1 Label Sad F1 Label Surprise
0.5761 0.1029 100 0.5207 0.5379 0.3482 0.0 0.7668 0.4559 0.0448 0.4737
0.5062 0.2058 200 0.4711 0.6262 0.4402 0.0 0.7759 0.2783 0.6496 0.4974
0.4609 0.3086 300 0.4505 0.6784 0.5705 0.2295 0.8 0.5860 0.6406 0.5962
0.4421 0.4115 400 0.4639 0.6516 0.5346 0.1818 0.7792 0.5325 0.6352 0.5446
0.4494 0.5144 500 0.4186 0.6535 0.5614 0.3235 0.8016 0.5967 0.5877 0.4974
0.4368 0.6173 600 0.4234 0.6832 0.5650 0.1455 0.8110 0.6102 0.6753 0.5829
0.4017 0.7202 700 0.4025 0.7185 0.6161 0.2105 0.8198 0.6602 0.6522 0.7376
0.4394 0.8230 800 0.4114 0.7039 0.6192 0.4474 0.8049 0.4580 0.656 0.7295
0.4148 0.9259 900 0.3776 0.7247 0.6752 0.5176 0.8109 0.6595 0.6723 0.7155
0.3777 1.0288 1000 0.3775 0.7366 0.6860 0.5053 0.8136 0.6627 0.7170 0.7313
0.2584 1.1317 1100 0.3924 0.7151 0.6459 0.4225 0.8106 0.6592 0.6280 0.7090
0.2816 1.2346 1200 0.3764 0.7292 0.6561 0.3714 0.8166 0.6595 0.7016 0.7313
0.2614 1.3374 1300 0.3825 0.7197 0.6533 0.3947 0.8106 0.6519 0.6667 0.7424
0.2536 1.4403 1400 0.3899 0.7327 0.6702 0.3947 0.8057 0.6974 0.7097 0.7436
0.2871 1.5432 1500 0.4037 0.7123 0.6396 0.4474 0.8182 0.5714 0.6824 0.6787
0.2981 1.6461 1600 0.3986 0.7028 0.6392 0.4368 0.8211 0.6742 0.5556 0.7085
0.2842 1.7490 1700 0.3978 0.7335 0.6627 0.4 0.828 0.6702 0.6840 0.7315
0.2599 1.8519 1800 0.3968 0.7353 0.6761 0.4578 0.8357 0.6839 0.6803 0.7229
0.2847 1.9547 1900 0.3981 0.7401 0.6706 0.4 0.8313 0.6845 0.6833 0.7538
0.2298 2.0576 2000 0.4003 0.7214 0.6678 0.4773 0.8220 0.6736 0.7025 0.6635
0.1892 2.1605 2100 0.4056 0.7396 0.6766 0.4471 0.8406 0.6667 0.7143 0.7143
0.1665 2.2634 2200 0.4141 0.7352 0.6628 0.3836 0.8323 0.6809 0.6752 0.7422
0.1565 2.3663 2300 0.4025 0.7342 0.6652 0.4211 0.8406 0.6514 0.6894 0.7236
0.162 2.4691 2400 0.4134 0.72 0.6462 0.3889 0.8290 0.6629 0.6867 0.6636
0.1689 2.5720 2500 0.4128 0.7366 0.6657 0.4110 0.8330 0.6667 0.7029 0.7149
0.1588 2.6749 2600 0.4174 0.7373 0.6699 0.4267 0.8295 0.6667 0.7029 0.7236
0.164 2.7778 2700 0.4122 0.7385 0.6721 0.4267 0.8343 0.6848 0.7004 0.7143
0.2007 2.8807 2800 0.4115 0.7397 0.6728 0.4156 0.8357 0.6845 0.7004 0.7280
0.1701 2.9835 2900 0.4133 0.7365 0.6695 0.4156 0.8347 0.6811 0.7 0.7160

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alxxtexxr/BERT-Base-SE2025T11A-eng-v0.5

Finetuned
(1)
this model