d-mxbai-L8-embed / README.md
aloobun's picture
Update README.md
f95c008 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1195425
  - loss:MSELoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - source_sentence: >-
      At an outdoor event in an Asian-themed area, a crowd congregates as one
      person in a yellow Chinese dragon costume confronts the camera.
    sentences:
      - Boy dressed in blue holds a toy.
      - A man is smiling at his wife.
      - Two young asian men are squatting.
  - source_sentence: A man with a shopping cart is studying the shelves in a supermarket aisle.
    sentences:
      - the animal is running
      - The children are watching TV at home.
      - >-
        Three young boys one is holding a camera and another is holding a green
        toy all are wearing t-shirt and smiling.
  - source_sentence: The door is open.
    sentences:
      - A girl is using an apple laptop with her headphones in her ears.
      - >-
        There are three men in this picture, two are on motorbikes, one of the
        men has a large piece of furniture on the back of his bike, the other is
        about to be handed a piece of paper by a man in a white shirt.
      - >-
        A large group of people are gathered outside of a brick building lit
        with spotlights.
  - source_sentence: >-
      A small group of children are standing in a classroom and one of them has
      a foot in a trashcan, which also has a rope leading out of it.
    sentences:
      - People are playing music.
      - Children are swimming at the beach.
      - Women are celebrating at a bar.
  - source_sentence: >-
      A black dog is drinking next to a brown and white dog that is looking at
      an orange ball in the lake, whilst a horse and rider passes behind.
    sentences:
      - Some men with jerseys are in a bar, watching a soccer match.
      - the guy is dead
      - >-
        There are two people running around a track in lane three and the one
        wearing a blue shirt with a green thing over the eyes is just barely
        ahead of the guy wearing an orange shirt and sunglasses.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - negative_mse
model-index:
  - name: SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8654028138219636
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8873087539713633
            name: Spearman Cosine
      - task:
          type: knowledge-distillation
          name: Knowledge Distillation
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: negative_mse
            value: -3.3795181661844254
            name: Negative Mse
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.834023412201456
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8723901159121923
            name: Spearman Cosine
license: apache-2.0
language:
  - en

SentenceTransformer based on Model Distillation

In this experiment with knowledge distillation for embedding models, i retained 8 layers from the teacher model. This is an attempt to create a lighter, faster version.

  • the top left graph shows how well your model's predictions match reality. Spearman correlation = 0.887
  • the top right compares the correlation performance of this model vs the reference(mxbai-embed-large-v1) model - both bars around 0.8-0.9
  • bottom left shows, this model processes about 45 samples/s and mxbai-embed-large-v1 processes about 30 samples/s.
  • the bottom right shows a small accuracy drop for this model.

image/png

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
    'Some men with jerseys are in a bar, watching a soccer match.',
    'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.8654 0.834
spearman_cosine 0.8873 0.8724

Knowledge Distillation

Metric Value
negative_mse -3.3795

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,195,425 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 4 tokens
    • mean: 12.24 tokens
    • max: 52 tokens
    • size: 1024 elements
  • Samples:
    sentence label
    A person on a horse jumps over a broken down airplane. [-0.012967385351657867, 0.3716000020503998, 0.252520889043808, 0.7052643299102783, -0.15118499100208282, ...]
    Children smiling and waving at camera [0.15414997935295105, 0.6666896939277649, -0.3150098919868469, 1.0102407932281494, 0.4113735556602478, ...]
    A boy is jumping on skateboard in the middle of a red bridge. [-0.2989530563354492, 0.8571284413337708, -0.48532426357269287, 0.8935043215751648, 0.28524795174598694, ...]
  • Loss: MSELoss

Evaluation Dataset

Unnamed Dataset

  • Size: 10,000 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 5 tokens
    • mean: 13.23 tokens
    • max: 57 tokens
    • size: 1024 elements
  • Samples:
    sentence label
    Two women are embracing while holding to go packages. [-0.35094621777534485, 0.4337681233882904, 0.22905530035495758, 0.9438946843147278, -1.0199058055877686, ...]
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. [-0.37593328952789307, 0.6690596342086792, -0.14921458065509796, 0.7559019923210144, -0.4093412756919861, ...]
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles [0.21969863772392273, 0.5065202713012695, -0.25664886832237244, 0.2569092810153961, -0.05940837413072586, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0001
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.4.0
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}