See axolotl config
axolotl version: 0.10.0.dev0
#apt update && apt install -y libopenmpi-dev nvtop htop && curl -LsSf https://astral.sh/uv/install.sh | sh && export PATH="$HOME/.local/bin:$PATH" && git clone https://github.com/axolotl-ai-cloud/axolotl && uv venv && source .venv/bin/activate && cd axolotl && git checkout be0cb998d8e15ebe68a6742bbe09473be3d754f9 && uv pip install torch==2.6.0 torchvision packaging ninja mpi4py setuptools ftfy deepspeed huggingface_hub[cli,hf_transfer] && uv pip install came_pytorch && uv pip install "cut-cross-entropy[transformers] @ git+https://github.com/apple/ml-cross-entropy.git" && uv pip install git+https://github.com/linkedin/Liger-Kernel.git && uv pip install --no-build-isolation -e . && uv pip install 'transformers==4.51.3' && export HF_HUB_ENABLE_HF_TRANSFER=1 && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
base_model: allura-forge/l4-scout-linearized-nf4-fixed
model_type: Llama4ForConditionalGeneration
# Automatically upload checkpoint and final model to HF
hub_model_id: allura-forge/toasted-scout-adapter-qlora
hub_strategy: "every_save"
wandb_project: ScoutTest
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_glu_activation: true
liger_rms_norm: true
liger_layer_norm: true
cut_cross_entropy: true
llama4_linearized_experts: true # needed with custom linearized experts model
load_in_4bit: true
adapter: qlora
lora_r: 32
lora_alpha: 32
lora_dropout: 0
lora_target_modules:
- self_attn.q_proj
- self_attn.k_proj
- self_attn.v_proj
- self_attn.o_proj
- shared_expert.gate_proj
- shared_expert.up_proj
- shared_expert.down_proj
- layers.4[3-7].feed_forward.experts.gate_projs.[0-9]+$
- layers.4[3-7].feed_forward.experts.up_projs.[0-9]+$
- layers.4[3-7].feed_forward.experts.down_projs.[0-9]+$
lora_modules_to_save:
# - lm_head # needed if modifying vocabulary
# - embed_tokens
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true
sequence_len: 8192 # up to 8k will work on a single H100
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: rex
learning_rate: 1e-5
#warmup_steps: 0
chat_template: llama4
special_tokens:
eos_token: "<|eot|>"
datasets:
- path: ToastyPigeon/SpringDragon-Instruct
type: chat_template
split: train
field_messages: conversations
message_property_mappings:
role: from
content: value
- path: ToastyPigeon/new-story-dataset
type: completion
data_files: new-story-dataset-v2.json
field: text
- path: ToastyPigeon/new-story-dataset
type: completion
data_files:
- ehl_samples.json
- JDIATE.json
field: text
- path: ToastyPigeon/some-rp-extended
type: chat_template
split: train
field_messages: conversations
message_property_mappings:
role: from
content: value
- path: allura-org/fujin-instruct-v2
type: chat_template
split: train
field_messages: conversations
message_property_mappings:
role: from
content: value
shuffle_merged_datasets: true
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./ckpts
bf16: true
tf32: true
torch_compile: true
flex_attention: true
flex_attn_compile_kwargs:
dynamic: false
mode: max-autotune-no-cudagraphs
#deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
eval_strategy: "no"
#evals_per_epoch: 1
saves_per_epoch: 20
save_total_limit: 1
save_safetensors: true
seed: 420
gc_steps: 10
weight_decay: 0.01
toasted-scout-adapter-qlora
This model is a fine-tuned version of allura-forge/l4-scout-linearized-nf4-fixed on the ToastyPigeon/SpringDragon-Instruct, the ToastyPigeon/new-story-dataset, the ToastyPigeon/new-story-dataset, the ToastyPigeon/some-rp-extended and the allura-org/fujin-instruct-v2 datasets.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 420
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 26
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for allura-forge/toasted-scout-adapter-qlora
Base model
allura-forge/l4-scout-linearized-nf4-fixed