See axolotl config
axolotl version: 0.12.0.dev0
# === Model Configuration ===
base_model: ibm-granite/granite-3.3-8b-instruct
load_in_8bit: false
load_in_4bit: false
# === Training Setup ===
num_epochs: 2
micro_batch_size: 4
gradient_accumulation_steps: 4
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# === LoRA Configuration ===
adapter: lora
lora_r: 128
lora_alpha: 16
lora_dropout: 0.35
lora_target_modules:
lora_target_linear: true
peft_use_rslora: true
max_grad_norm: 0.1
chunked_cross_entropy: true
# === Hyperparameter Configuration ===
optimizer: adamw_torch_fused
learning_rate: 2e-6
lr_scheduler: rex
weight_decay: 0.01
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1
# === Data Configuration ===
datasets:
- path: allura-forge/fuckedup-inkmix
type: chat_template
split: train
field_messages: conversations
message_field_role: from
message_field_content: value
chat_template: jinja
chat_template_jinja: |
{%- for message in messages -%}
{{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>
' -}}
{%- if loop.last and add_generation_prompt -%}
{{- '<|start_of_role|>assistant<|end_of_role|>' -}}
{%- endif -%}
{%- endfor -%}
dataset_prepared_path: last_run_prepared
# === Hardware Optimization ===
gradient_checkpointing: true
# === Wandb Tracking ===
wandb_project: frizzite-fuckedup-inkmix
# === Checkpointing ===
saves_per_epoch: 2
save_only_model: true
# === Advanced Settings ===
output_dir: ./frizzite-small-ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
frizzite-small-ckpts
This model is a fine-tuned version of ibm-granite/granite-3.3-8b-instruct on the allura-forge/fuckedup-inkmix dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 46
- training_steps: 926
Training results
Framework versions
- PEFT 0.16.0
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for allura-forge/g3.3-sft-adpts
Base model
ibm-granite/granite-3.3-8b-base
Finetuned
ibm-granite/granite-3.3-8b-instruct