Update image_preprocessing_molmo.py
#6
by
ctranslate2-4you
- opened
- image_preprocessing_molmo.py +78 -44
image_preprocessing_molmo.py
CHANGED
@@ -66,59 +66,93 @@ def normalize_image(image, offset, scale):
|
|
66 |
|
67 |
|
68 |
def resize_and_pad(
|
69 |
-
image,
|
70 |
-
desired_output_size,
|
71 |
-
resize_method=
|
72 |
-
pad_value=0,
|
73 |
-
normalize=True,
|
74 |
-
image_mean=OPENAI_CLIP_MEAN,
|
75 |
-
image_std=OPENAI_CLIP_STD,
|
76 |
-
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
desired_height, desired_width = desired_output_size
|
78 |
height, width = image.shape[:2]
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
[scaled_height, scaled_width],
|
95 |
-
|
96 |
-
antialias=True
|
97 |
-
)
|
98 |
-
|
99 |
-
image
|
100 |
-
|
101 |
-
# image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
102 |
-
# image = convert_image_dtype(image) # resize in flaot32
|
103 |
-
# image = torchvision.transforms.Resize(
|
104 |
-
# [scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
105 |
-
# )(image)
|
106 |
-
# image = torch.clip(image, 0.0, 1.0)
|
107 |
-
# image = torch.permute(image, [1, 2, 0]).numpy()
|
108 |
|
|
|
|
|
|
|
|
|
109 |
top_pad = (desired_height - scaled_height) // 2
|
|
|
110 |
left_pad = (desired_width - scaled_width) // 2
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
if normalize:
|
119 |
-
|
120 |
-
return image, image_mask
|
121 |
|
|
|
122 |
|
123 |
def select_tiling(h, w, patch_size, max_num_patches):
|
124 |
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
|
|
66 |
|
67 |
|
68 |
def resize_and_pad(
|
69 |
+
image: np.ndarray,
|
70 |
+
desired_output_size: List[int],
|
71 |
+
resize_method: str = "bilinear",
|
72 |
+
pad_value: float = 0,
|
73 |
+
normalize: bool = True,
|
74 |
+
image_mean: Optional[List[float]] = OPENAI_CLIP_MEAN,
|
75 |
+
image_std: Optional[List[float]] = OPENAI_CLIP_STD,
|
76 |
+
) -> (np.ndarray, np.ndarray):
|
77 |
+
"""
|
78 |
+
Resize and pad the image to the desired output size.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
image (np.ndarray): Input image as a NumPy array.
|
82 |
+
desired_output_size (List[int]): Desired output size as [height, width].
|
83 |
+
resize_method (str, optional): Resize interpolation method. Defaults to "bilinear".
|
84 |
+
pad_value (float, optional): Padding value. Defaults to 0.
|
85 |
+
normalize (bool, optional): Whether to normalize the image. Defaults to True.
|
86 |
+
image_mean (Optional[List[float]], optional): Mean for normalization. Defaults to OPENAI_CLIP_MEAN.
|
87 |
+
image_std (Optional[List[float]], optional): Standard deviation for normalization. Defaults to OPENAI_CLIP_STD.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
Tuple[np.ndarray, np.ndarray]: Resized and padded image, and image mask.
|
91 |
+
"""
|
92 |
desired_height, desired_width = desired_output_size
|
93 |
height, width = image.shape[:2]
|
94 |
|
95 |
+
# Calculate scaling factors and determine the scaling factor to maintain aspect ratio
|
96 |
+
scale_y = desired_height / height
|
97 |
+
scale_x = desired_width / width
|
98 |
+
scale = min(scale_x, scale_y)
|
99 |
+
scaled_height = int(height * scale)
|
100 |
+
scaled_width = int(width * scale)
|
101 |
+
|
102 |
+
# Convert the image to a PyTorch tensor and normalize to [0, 1]
|
103 |
+
image_tensor = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0
|
104 |
+
|
105 |
+
# Define the interpolation mode
|
106 |
+
if resize_method.lower() == "bilinear":
|
107 |
+
interpolation = InterpolationMode.BILINEAR
|
108 |
+
elif resize_method.lower() == "nearest":
|
109 |
+
interpolation = InterpolationMode.NEAREST
|
110 |
+
elif resize_method.lower() == "bicubic":
|
111 |
+
interpolation = InterpolationMode.BICUBIC
|
112 |
+
elif resize_method.lower() == "lanczos":
|
113 |
+
interpolation = InterpolationMode.LANCZOS
|
114 |
+
else:
|
115 |
+
raise ValueError(f"Unsupported resize method: {resize_method}")
|
116 |
+
|
117 |
+
# Resize the image
|
118 |
+
resized_image = torchvision.transforms.Resize(
|
119 |
[scaled_height, scaled_width],
|
120 |
+
interpolation=interpolation,
|
121 |
+
antialias=True
|
122 |
+
)(image_tensor)
|
123 |
+
|
124 |
+
# Clip the image to ensure values are within [0, 1]
|
125 |
+
resized_image = torch.clamp(resized_image, 0.0, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# Convert back to NumPy
|
128 |
+
resized_image_np = resized_image.permute(1, 2, 0).numpy()
|
129 |
+
|
130 |
+
# Calculate padding
|
131 |
top_pad = (desired_height - scaled_height) // 2
|
132 |
+
bottom_pad = desired_height - scaled_height - top_pad
|
133 |
left_pad = (desired_width - scaled_width) // 2
|
134 |
+
right_pad = desired_width - scaled_width - left_pad
|
135 |
+
|
136 |
+
# Pad the image using NumPy
|
137 |
+
padded_image = np.pad(
|
138 |
+
resized_image_np,
|
139 |
+
pad_width=((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)),
|
140 |
+
mode='constant',
|
141 |
+
constant_values=pad_value
|
142 |
+
)
|
143 |
+
|
144 |
+
# Create the image mask
|
145 |
+
image_mask = np.pad(
|
146 |
+
np.ones((scaled_height, scaled_width), dtype=bool),
|
147 |
+
pad_width=((top_pad, bottom_pad), (left_pad, right_pad)),
|
148 |
+
mode='constant',
|
149 |
+
constant_values=False
|
150 |
+
)
|
151 |
+
|
152 |
if normalize:
|
153 |
+
padded_image = normalize_image(padded_image, offset=image_mean, scale=image_std)
|
|
|
154 |
|
155 |
+
return padded_image, image_mask
|
156 |
|
157 |
def select_tiling(h, w, patch_size, max_num_patches):
|
158 |
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|