wav2vec2-large-xlsr-coraa-texts-aug-exp-1

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3162
  • Wer: 0.2298
  • Cer: 0.1328
  • Per: 0.2260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
43.995 1.0 84 3.3727 1.0 0.9671 1.0
9.1824 2.0 168 2.9921 1.0 0.9671 1.0
3.1225 3.0 252 2.9321 1.0 0.9671 1.0
2.979 4.0 336 2.9394 1.0 0.9671 1.0
2.9357 5.0 420 2.9118 1.0 0.9671 1.0
2.9116 6.0 504 2.8401 1.0 0.9671 1.0
2.9116 7.0 588 2.0977 1.0 0.7348 1.0
2.6841 8.0 672 0.8210 0.5521 0.2093 0.5335
1.6358 9.0 756 0.5586 0.3329 0.1633 0.3080
1.1226 10.0 840 0.4817 0.2951 0.1537 0.2834
0.9403 11.0 924 0.4337 0.2755 0.1482 0.2643
0.8262 12.0 1008 0.4019 0.2717 0.1460 0.2613
0.8262 13.0 1092 0.3872 0.2682 0.1458 0.2590
0.7654 14.0 1176 0.3664 0.2532 0.1414 0.2445
0.6788 15.0 1260 0.3476 0.2501 0.1390 0.2405
0.647 16.0 1344 0.3508 0.2453 0.1388 0.2364
0.6058 17.0 1428 0.3425 0.2448 0.1392 0.2349
0.5853 18.0 1512 0.3393 0.2377 0.1351 0.2293
0.5853 19.0 1596 0.3276 0.2293 0.1347 0.2222
0.5356 20.0 1680 0.3275 0.2316 0.1340 0.2275
0.5323 21.0 1764 0.3245 0.2301 0.1342 0.2265
0.501 22.0 1848 0.3258 0.2232 0.1334 0.2197
0.4956 23.0 1932 0.3262 0.2242 0.1332 0.2202
0.4427 24.0 2016 0.3162 0.2298 0.1328 0.2260
0.4443 25.0 2100 0.3225 0.2285 0.1331 0.2252
0.4443 26.0 2184 0.3246 0.2270 0.1333 0.2227
0.4234 27.0 2268 0.3171 0.2250 0.1327 0.2214
0.4245 28.0 2352 0.3181 0.2265 0.1344 0.2230
0.3993 29.0 2436 0.3283 0.2250 0.1331 0.2217
0.3769 30.0 2520 0.3292 0.2354 0.1359 0.2324
0.3925 31.0 2604 0.3276 0.2344 0.1360 0.2313
0.3925 32.0 2688 0.3356 0.2301 0.1345 0.2275
0.3724 33.0 2772 0.3363 0.2273 0.1357 0.2245
0.3614 34.0 2856 0.3307 0.2311 0.1358 0.2280
0.3705 35.0 2940 0.3276 0.2316 0.1356 0.2285
0.3376 36.0 3024 0.3309 0.2379 0.1373 0.2336
0.3434 37.0 3108 0.3340 0.2291 0.1367 0.2255
0.3434 38.0 3192 0.3428 0.2326 0.1369 0.2293
0.3245 39.0 3276 0.3410 0.2260 0.1340 0.2227
0.3087 40.0 3360 0.3516 0.2285 0.1348 0.2257
0.3025 41.0 3444 0.3396 0.2268 0.1347 0.2237
0.2953 42.0 3528 0.3443 0.2255 0.1346 0.2222
0.2778 43.0 3612 0.3406 0.2255 0.1351 0.2230
0.2778 44.0 3696 0.3457 0.2346 0.1367 0.2308

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support