wav2vec2-large-xlsr-coraa-texts-aug-exp-1
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3162
- Wer: 0.2298
- Cer: 0.1328
- Per: 0.2260
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
43.995 | 1.0 | 84 | 3.3727 | 1.0 | 0.9671 | 1.0 |
9.1824 | 2.0 | 168 | 2.9921 | 1.0 | 0.9671 | 1.0 |
3.1225 | 3.0 | 252 | 2.9321 | 1.0 | 0.9671 | 1.0 |
2.979 | 4.0 | 336 | 2.9394 | 1.0 | 0.9671 | 1.0 |
2.9357 | 5.0 | 420 | 2.9118 | 1.0 | 0.9671 | 1.0 |
2.9116 | 6.0 | 504 | 2.8401 | 1.0 | 0.9671 | 1.0 |
2.9116 | 7.0 | 588 | 2.0977 | 1.0 | 0.7348 | 1.0 |
2.6841 | 8.0 | 672 | 0.8210 | 0.5521 | 0.2093 | 0.5335 |
1.6358 | 9.0 | 756 | 0.5586 | 0.3329 | 0.1633 | 0.3080 |
1.1226 | 10.0 | 840 | 0.4817 | 0.2951 | 0.1537 | 0.2834 |
0.9403 | 11.0 | 924 | 0.4337 | 0.2755 | 0.1482 | 0.2643 |
0.8262 | 12.0 | 1008 | 0.4019 | 0.2717 | 0.1460 | 0.2613 |
0.8262 | 13.0 | 1092 | 0.3872 | 0.2682 | 0.1458 | 0.2590 |
0.7654 | 14.0 | 1176 | 0.3664 | 0.2532 | 0.1414 | 0.2445 |
0.6788 | 15.0 | 1260 | 0.3476 | 0.2501 | 0.1390 | 0.2405 |
0.647 | 16.0 | 1344 | 0.3508 | 0.2453 | 0.1388 | 0.2364 |
0.6058 | 17.0 | 1428 | 0.3425 | 0.2448 | 0.1392 | 0.2349 |
0.5853 | 18.0 | 1512 | 0.3393 | 0.2377 | 0.1351 | 0.2293 |
0.5853 | 19.0 | 1596 | 0.3276 | 0.2293 | 0.1347 | 0.2222 |
0.5356 | 20.0 | 1680 | 0.3275 | 0.2316 | 0.1340 | 0.2275 |
0.5323 | 21.0 | 1764 | 0.3245 | 0.2301 | 0.1342 | 0.2265 |
0.501 | 22.0 | 1848 | 0.3258 | 0.2232 | 0.1334 | 0.2197 |
0.4956 | 23.0 | 1932 | 0.3262 | 0.2242 | 0.1332 | 0.2202 |
0.4427 | 24.0 | 2016 | 0.3162 | 0.2298 | 0.1328 | 0.2260 |
0.4443 | 25.0 | 2100 | 0.3225 | 0.2285 | 0.1331 | 0.2252 |
0.4443 | 26.0 | 2184 | 0.3246 | 0.2270 | 0.1333 | 0.2227 |
0.4234 | 27.0 | 2268 | 0.3171 | 0.2250 | 0.1327 | 0.2214 |
0.4245 | 28.0 | 2352 | 0.3181 | 0.2265 | 0.1344 | 0.2230 |
0.3993 | 29.0 | 2436 | 0.3283 | 0.2250 | 0.1331 | 0.2217 |
0.3769 | 30.0 | 2520 | 0.3292 | 0.2354 | 0.1359 | 0.2324 |
0.3925 | 31.0 | 2604 | 0.3276 | 0.2344 | 0.1360 | 0.2313 |
0.3925 | 32.0 | 2688 | 0.3356 | 0.2301 | 0.1345 | 0.2275 |
0.3724 | 33.0 | 2772 | 0.3363 | 0.2273 | 0.1357 | 0.2245 |
0.3614 | 34.0 | 2856 | 0.3307 | 0.2311 | 0.1358 | 0.2280 |
0.3705 | 35.0 | 2940 | 0.3276 | 0.2316 | 0.1356 | 0.2285 |
0.3376 | 36.0 | 3024 | 0.3309 | 0.2379 | 0.1373 | 0.2336 |
0.3434 | 37.0 | 3108 | 0.3340 | 0.2291 | 0.1367 | 0.2255 |
0.3434 | 38.0 | 3192 | 0.3428 | 0.2326 | 0.1369 | 0.2293 |
0.3245 | 39.0 | 3276 | 0.3410 | 0.2260 | 0.1340 | 0.2227 |
0.3087 | 40.0 | 3360 | 0.3516 | 0.2285 | 0.1348 | 0.2257 |
0.3025 | 41.0 | 3444 | 0.3396 | 0.2268 | 0.1347 | 0.2237 |
0.2953 | 42.0 | 3528 | 0.3443 | 0.2255 | 0.1346 | 0.2222 |
0.2778 | 43.0 | 3612 | 0.3406 | 0.2255 | 0.1351 | 0.2230 |
0.2778 | 44.0 | 3696 | 0.3457 | 0.2346 | 0.1367 | 0.2308 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support