vit-base-food101

This model is a fine-tuned version of google/vit-base-patch16-224 on the ethz/food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7395
  • Accuracy: 0.8017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5327 0.1320 500 2.3914 0.5946
1.5713 0.2640 1000 1.5558 0.6978
1.2869 0.3960 1500 1.2575 0.7271
1.1479 0.5280 2000 1.1093 0.7476
1.0838 0.6600 2500 1.0286 0.7571
0.9623 0.7920 3000 0.9798 0.7641
0.9855 0.9240 3500 0.9395 0.7670
0.9263 1.0560 4000 0.9113 0.7723
0.8691 1.1880 4500 0.8844 0.7782
0.8025 1.3200 5000 0.8694 0.7768
0.7783 1.4520 5500 0.8574 0.7820
0.7774 1.5839 6000 0.8457 0.7799
0.7716 1.7159 6500 0.8309 0.7871
0.8445 1.8479 7000 0.8230 0.7868
0.8214 1.9799 7500 0.8107 0.7902
0.7226 2.1119 8000 0.8077 0.7897
0.7712 2.2439 8500 0.8015 0.7914
0.7306 2.3759 9000 0.7970 0.7889
0.6829 2.5079 9500 0.7919 0.7912
0.7593 2.6399 10000 0.7883 0.7901
0.6856 2.7719 10500 0.7802 0.7943
0.7156 2.9039 11000 0.7765 0.7976
0.6688 3.0359 11500 0.7735 0.7978
0.6245 3.1679 12000 0.7711 0.7972
0.668 3.2999 12500 0.7679 0.7989
0.6732 3.4319 13000 0.7657 0.7985
0.686 3.5639 13500 0.7645 0.7982
0.7121 3.6959 14000 0.7612 0.7984
0.6513 3.8279 14500 0.7599 0.7993
0.6963 3.9599 15000 0.7585 0.7993
0.7219 4.0919 15500 0.7554 0.7999
0.6253 4.2239 16000 0.7526 0.8016
0.6278 4.3559 16500 0.7504 0.8026
0.6605 4.4879 17000 0.7502 0.8028
0.6447 4.6199 17500 0.7493 0.8028
0.6469 4.7518 18000 0.7463 0.8040
0.6745 4.8838 18500 0.7462 0.8028
0.5882 5.0158 19000 0.7463 0.7995
0.6241 5.1478 19500 0.7428 0.8046
0.62 5.2798 20000 0.7439 0.8013
0.6435 5.4118 20500 0.7422 0.8018
0.6273 5.5438 21000 0.7418 0.8030
0.623 5.6758 21500 0.7415 0.8050
0.6181 5.8078 22000 0.7385 0.8055
0.6382 5.9398 22500 0.7388 0.8071
0.587 6.0718 23000 0.7379 0.8058
0.603 6.2038 23500 0.7374 0.8038
0.6334 6.3358 24000 0.7366 0.8054
0.613 6.4678 24500 0.7364 0.8048
0.5917 6.5998 25000 0.7355 0.8051
0.6167 6.7318 25500 0.7352 0.8059
0.6121 6.8638 26000 0.7347 0.8066
0.6133 6.9958 26500 0.7342 0.8059
0.6304 7.1278 27000 0.7338 0.8057
0.6041 7.2598 27500 0.7342 0.8063
0.6333 7.3918 28000 0.7334 0.8059
0.6234 7.5238 28500 0.7335 0.8061
0.5961 7.6558 29000 0.7334 0.8073
0.61 7.7878 29500 0.7333 0.8070
0.6586 7.9197 30000 0.7331 0.8070

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
117
Safetensors
Model size
85.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for alimoh02/vit-base-food101

Finetuned
(836)
this model

Space using alimoh02/vit-base-food101 1