output
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 15.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1985 | 0.22 | 2500 | 1.0940 |
1.0937 | 0.44 | 5000 | 1.0033 |
1.0675 | 0.66 | 7500 | 0.9753 |
1.0565 | 0.87 | 10000 | 0.9801 |
1.0244 | 1.09 | 12500 | 0.9526 |
0.9943 | 1.31 | 15000 | 0.9298 |
0.9799 | 1.53 | 17500 | 0.9035 |
0.95 | 1.75 | 20000 | 0.8835 |
0.933 | 1.97 | 22500 | 0.8636 |
0.9079 | 2.18 | 25000 | 0.8507 |
0.8938 | 2.4 | 27500 | 0.8397 |
0.8781 | 2.62 | 30000 | 0.8195 |
0.8647 | 2.84 | 32500 | 0.8088 |
0.8422 | 3.06 | 35000 | 0.7954 |
0.831 | 3.28 | 37500 | 0.7871 |
0.8173 | 3.5 | 40000 | 0.7721 |
0.8072 | 3.71 | 42500 | 0.7611 |
0.8011 | 3.93 | 45000 | 0.7532 |
0.7828 | 4.15 | 47500 | 0.7431 |
0.7691 | 4.37 | 50000 | 0.7367 |
0.7659 | 4.59 | 52500 | 0.7292 |
0.7606 | 4.81 | 55000 | 0.7245 |
0.8082 | 5.02 | 57500 | 0.7696 |
0.8114 | 5.24 | 60000 | 0.7695 |
0.8022 | 5.46 | 62500 | 0.7613 |
0.7986 | 5.68 | 65000 | 0.7558 |
0.8018 | 5.9 | 67500 | 0.7478 |
0.782 | 6.12 | 70000 | 0.7435 |
0.7743 | 6.34 | 72500 | 0.7367 |
0.774 | 6.55 | 75000 | 0.7313 |
0.7692 | 6.77 | 77500 | 0.7270 |
0.7604 | 6.99 | 80000 | 0.7200 |
0.7468 | 7.21 | 82500 | 0.7164 |
0.7486 | 7.43 | 85000 | 0.7117 |
0.7399 | 7.65 | 87500 | 0.7043 |
0.7306 | 7.86 | 90000 | 0.6956 |
0.7243 | 8.08 | 92500 | 0.6959 |
0.7132 | 8.3 | 95000 | 0.6916 |
0.71 | 8.52 | 97500 | 0.6853 |
0.7128 | 8.74 | 100000 | 0.6855 |
0.7088 | 8.96 | 102500 | 0.6809 |
0.7002 | 9.18 | 105000 | 0.6784 |
0.6953 | 9.39 | 107500 | 0.6737 |
0.695 | 9.61 | 110000 | 0.6714 |
0.6871 | 9.83 | 112500 | 0.6687 |
0.7161 | 10.05 | 115000 | 0.6961 |
0.7265 | 10.27 | 117500 | 0.7006 |
0.7284 | 10.49 | 120000 | 0.6941 |
0.724 | 10.7 | 122500 | 0.6887 |
0.7266 | 10.92 | 125000 | 0.6931 |
0.7051 | 11.14 | 127500 | 0.6846 |
0.7106 | 11.36 | 130000 | 0.6816 |
0.7011 | 11.58 | 132500 | 0.6830 |
0.6997 | 11.8 | 135000 | 0.6784 |
0.6969 | 12.02 | 137500 | 0.6734 |
0.6968 | 12.23 | 140000 | 0.6709 |
0.6867 | 12.45 | 142500 | 0.6656 |
0.6925 | 12.67 | 145000 | 0.6661 |
0.6795 | 12.89 | 147500 | 0.6606 |
0.6774 | 13.11 | 150000 | 0.6617 |
0.6756 | 13.33 | 152500 | 0.6563 |
0.6728 | 13.54 | 155000 | 0.6547 |
0.6732 | 13.76 | 157500 | 0.6520 |
0.6704 | 13.98 | 160000 | 0.6492 |
0.6666 | 14.2 | 162500 | 0.6446 |
0.6615 | 14.42 | 165000 | 0.6488 |
0.6638 | 14.64 | 167500 | 0.6523 |
0.6588 | 14.85 | 170000 | 0.6415 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.1+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
Citing & Authors
If you use our work, please cite:
@incollection{Viegas_2023,
doi = {10.1007/978-3-031-36805-9_24},
url = {https://doi.org/10.1007%2F978-3-031-36805-9_24},
year = 2023,
publisher = {Springer Nature Switzerland},
pages = {349--365},
author = {Charles F. O. Viegas and Bruno C. Costa and Renato P. Ishii},
title = {{JurisBERT}: A New Approach that~Converts a~Classification Corpus into~an~{STS} One},
booktitle = {Computational Science and Its Applications {\textendash} {ICCSA} 2023}
}
- Downloads last month
- 293
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for alfaneo/bertimbaulaw-base-portuguese-cased
Base model
neuralmind/bert-base-portuguese-cased