|
--- |
|
license: mit |
|
base_model: alexue4/text-normalization-ru-new |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: text-normalization-ru-new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# text-normalization-ru-new |
|
|
|
This model is a fine-tuned version of [alexue4/text-normalization-ru-new](https://huggingface.co/alexue4/text-normalization-ru-new) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0003 |
|
- Mean Distance: 0 |
|
- Max Distance: 0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 30 |
|
- eval_batch_size: 30 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Distance | Max Distance | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:------------:| |
|
| 0.0013 | 1.0 | 69 | 0.0028 | 0 | 2 | |
|
| 0.0006 | 2.0 | 138 | 0.0026 | 0 | 3 | |
|
| 0.0025 | 3.0 | 207 | 0.0039 | 0 | 3 | |
|
| 0.0004 | 4.0 | 276 | 0.0037 | 0 | 3 | |
|
| 0.0005 | 5.0 | 345 | 0.0091 | 0 | 3 | |
|
| 0.0009 | 6.0 | 414 | 0.0006 | 0 | 0 | |
|
| 0.0016 | 7.0 | 483 | 0.0003 | 0 | 0 | |
|
| 0.0012 | 8.0 | 552 | 0.0111 | 0 | 5 | |
|
| 0.0008 | 9.0 | 621 | 0.0004 | 0 | 0 | |
|
| 0.0018 | 10.0 | 690 | 0.0003 | 0 | 0 | |
|
| 0.0028 | 11.0 | 759 | 0.0003 | 0 | 0 | |
|
| 0.0008 | 12.0 | 828 | 0.0003 | 0 | 0 | |
|
| 0.001 | 13.0 | 897 | 0.0004 | 0 | 2 | |
|
| 0.0026 | 14.0 | 966 | 0.0005 | 0 | 2 | |
|
| 0.0015 | 15.0 | 1035 | 0.0007 | 0 | 3 | |
|
| 0.0009 | 16.0 | 1104 | 0.0007 | 0 | 3 | |
|
| 0.0014 | 17.0 | 1173 | 0.0003 | 0 | 0 | |
|
| 0.001 | 18.0 | 1242 | 0.0004 | 0 | 0 | |
|
| 0.0007 | 19.0 | 1311 | 0.0013 | 0 | 3 | |
|
| 0.0013 | 20.0 | 1380 | 0.0013 | 0 | 3 | |
|
| 0.0007 | 21.0 | 1449 | 0.0003 | 0 | 0 | |
|
| 0.0016 | 22.0 | 1518 | 0.0003 | 0 | 0 | |
|
| 0.0013 | 23.0 | 1587 | 0.0003 | 0 | 0 | |
|
| 0.0004 | 24.0 | 1656 | 0.0003 | 0 | 0 | |
|
| 0.001 | 25.0 | 1725 | 0.0003 | 0 | 0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|