See axolotl config
axolotl version: 0.10.0.dev0
adapter: lora
base_model: Qwen/Qwen3-4B-Base
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 0a204b49682b086c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: functions
field_instruction: user
field_output: function_call
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: aleegis/d84a3e46-674e-4f81-a1ce-36e9debaab47
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1
max_steps: 800
micro_batch_size: 4
mlflow_experiment_name: /tmp/0a204b49682b086c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 15
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: null
wandb_mode: online
wandb_name: 65a4c4b0-7d88-4322-b76c-31e96c9f61c5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 65a4c4b0-7d88-4322-b76c-31e96c9f61c5
warmup_steps: 80
weight_decay: 0
xformers_attention: null
d84a3e46-674e-4f81-a1ce-36e9debaab47
This model is a fine-tuned version of Qwen/Qwen3-4B-Base on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 80
- training_steps: 800
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for aleegis/d84a3e46-674e-4f81-a1ce-36e9debaab47
Base model
Qwen/Qwen3-4B-Base