|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:12577 |
|
- loss:AttributeTripletLoss |
|
base_model: Alibaba-NLP/gte-base-en-v1.5 |
|
widget: |
|
- source_sentence: '9781856696616' |
|
sentences: |
|
- '9780310278832' |
|
- author |
|
- Karen Rose |
|
- isbn_13 |
|
- source_sentence: Gilbert Guide |
|
sentences: |
|
- publication_date |
|
- '2010' |
|
- author |
|
- Bill Bryson |
|
- source_sentence: September 22, 2009 |
|
sentences: |
|
- title |
|
- '2010' |
|
- Spirit and Spirituality |
|
- publication_date |
|
- source_sentence: Andrea Molinari |
|
sentences: |
|
- author |
|
- Janet Evanovich |
|
- '2005' |
|
- publication_date |
|
- source_sentence: '9781416579021' |
|
sentences: |
|
- publication_date |
|
- '1999' |
|
- '9780802471635' |
|
- isbn_13 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- silhouette_cosine |
|
- silhouette_euclidean |
|
model-index: |
|
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 1.0 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy |
|
value: 1.0 |
|
name: Cosine Accuracy |
|
- task: |
|
type: silhouette |
|
name: Silhouette |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: silhouette_cosine |
|
value: 0.9716310501098633 |
|
name: Silhouette Cosine |
|
- type: silhouette_euclidean |
|
value: 0.8800336718559265 |
|
name: Silhouette Euclidean |
|
- type: silhouette_cosine |
|
value: 0.972745418548584 |
|
name: Silhouette Cosine |
|
- type: silhouette_euclidean |
|
value: 0.882105827331543 |
|
name: Silhouette Euclidean |
|
--- |
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("albertus-sussex/veriscrape-book-test-sbert-bs128_lr0.0002_ep5_euclidean_snTrue_spFalse_hn3_spl100") |
|
# Run inference |
|
sentences = [ |
|
'9781416579021', |
|
'9780802471635', |
|
'1999', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| **cosine_accuracy** | **1.0** | |
|
|
|
#### Silhouette |
|
|
|
* Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> |
|
|
|
| Metric | Value | |
|
|:----------------------|:-----------| |
|
| **silhouette_cosine** | **0.9716** | |
|
| silhouette_euclidean | 0.88 | |
|
|
|
#### Triplet |
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| **cosine_accuracy** | **1.0** | |
|
|
|
#### Silhouette |
|
|
|
* Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> |
|
|
|
| Metric | Value | |
|
|:----------------------|:-----------| |
|
| **silhouette_cosine** | **0.9727** | |
|
| silhouette_euclidean | 0.8821 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 12,577 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | pos_attr_name | neg_attr_name | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| |
|
| type | string | string | string | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.21 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.12 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.99 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.75 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.81 tokens</li><li>max: 5 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | pos_attr_name | neg_attr_name | |
|
|:----------------------------------------------|:----------------------------|:-----------------------------|:-----------------------|:---------------------| |
|
| <code>Knopf Doubleday Publishing Group</code> | <code>Hyperion Books</code> | <code>9780688144050</code> | <code>publisher</code> | <code>isbn_13</code> | |
|
| <code>Jane Austen</code> | <code>Gillian Gilert</code> | <code>: 9780061288890</code> | <code>author</code> | <code>isbn_13</code> | |
|
| <code>Brett Harris</code> | <code>Paul Helm</code> | <code>9780756657703</code> | <code>author</code> | <code>isbn_13</code> | |
|
* Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 1,398 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | pos_attr_name | neg_attr_name | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| |
|
| type | string | string | string | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.19 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.21 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.9 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.77 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.84 tokens</li><li>max: 5 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | pos_attr_name | neg_attr_name | |
|
|:------------------------------------------|:--------------------------------------------------------------------------------------|:-----------------------------|:---------------------|:------------------------------| |
|
| <code>My Changes</code> | <code>The Photographer's Eye: Composition and Design for Better Digital Photos</code> | <code>Visual</code> | <code>title</code> | <code>publisher</code> | |
|
| <code>Now, Discover Your Strengths</code> | <code>The One Minute Father: Improve Every Moment You Spend with Your Child</code> | <code>Three Rivers Pr</code> | <code>title</code> | <code>publisher</code> | |
|
| <code>9781597528283</code> | <code>9780395698655</code> | <code>10/01/1998</code> | <code>isbn_13</code> | <code>publication_date</code> | |
|
* Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.EUCLIDEAN", |
|
"triplet_margin": 5 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `learning_rate`: 0.0002 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 0.0002 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | |
|
|:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:| |
|
| -1 | -1 | - | - | 0.5086 | 0.1768 | |
|
| 1.0 | 99 | 0.5802 | 0.0524 | 0.9964 | 0.8724 | |
|
| 2.0 | 198 | 0.0406 | 0.0171 | 1.0 | 0.9308 | |
|
| 3.0 | 297 | 0.0119 | 0.0 | 1.0 | 0.9653 | |
|
| 4.0 | 396 | 0.0045 | 0.0208 | 0.9986 | 0.9647 | |
|
| 5.0 | 495 | 0.0017 | 0.0 | 1.0 | 0.9716 | |
|
| -1 | -1 | - | - | 1.0 | 0.9727 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.16 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.45.2 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.5.2 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### AttributeTripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |