metadata
library_name: transformers
tags:
- legal
datasets:
- ealvaradob/phishing-dataset
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
base_model:
- distilbert/distilbert-base-uncased
📧 distilbert-finetuned-phishing
A fine-tuned distilbert-base-uncased
model for phishing email classification. This model is designed to distinguish between safe and phishing emails using natural language content.
Colab Notebook
🧪 Evaluation Results
The model was trained on 77,677 emails and evaluated with the following results:
Metric | Value |
---|---|
Accuracy | 0.9639 |
Precision | 0.9648 |
Recall | 0.9489 |
F1 Score | 0.9568 |
Eval Loss | 0.1326 |
⚙️ Training Configuration
TrainingArguments( output_dir="./hf-phishing-model", evaluation_strategy="epoch", save_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=64, num_train_epochs=3, weight_decay=0.01, logging_dir="./logs", load_best_model_at_end=True, fp16=torch.cuda.is_available(), )