|
--- |
|
license: mit |
|
base_model: cahya/distilbert-base-indonesian |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: distilbert-base-indonesian-finetuned-PRDECT-ID |
|
results: [] |
|
widget: |
|
- text: "Ibu sedang memasak [MASK]." |
|
example_title: "Contoh" |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-indonesian-finetuned-PRDECT-ID |
|
|
|
This model is a fine-tuned version of [cahya/distilbert-base-indonesian](https://huggingface.co/cahya/distilbert-base-indonesian) on an unknown dataset. |
|
Perplexity: ~31 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.9507 | 1.0 | 41 | 0.8377 | |
|
| 0.0765 | 2.0 | 82 | 0.0212 | |
|
| 0.0025 | 3.0 | 123 | 0.0020 | |
|
| 0.0013 | 4.0 | 164 | 0.0013 | |
|
| 0.0009 | 5.0 | 205 | 0.0009 | |
|
| 0.0007 | 6.0 | 246 | 0.0007 | |
|
| 0.0005 | 7.0 | 287 | 0.0006 | |
|
| 0.0004 | 8.0 | 328 | 0.0005 | |
|
| 0.0003 | 9.0 | 369 | 0.0004 | |
|
| 0.0002 | 10.0 | 410 | 0.0003 | |
|
| 0.0002 | 11.0 | 451 | 0.0003 | |
|
| 0.0002 | 12.0 | 492 | 0.0003 | |
|
| 0.0002 | 13.0 | 533 | 0.0002 | |
|
| 0.0001 | 14.0 | 574 | 0.0002 | |
|
| 0.0001 | 15.0 | 615 | 0.0002 | |
|
| 0.0001 | 16.0 | 656 | 0.0002 | |
|
| 0.0001 | 17.0 | 697 | 0.0002 | |
|
| 0.0001 | 18.0 | 738 | 0.0002 | |
|
| 0.0001 | 19.0 | 779 | 0.0002 | |
|
| 0.0001 | 20.0 | 820 | 0.0002 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|