SetFit with akhooli/sbert_ar_nli_500k_ubc_norm
This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/sbert_ar_nli_500k_ubc_norm as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
positive |
- ' سبحان الله الفلسطينيين شعب خاين في كل مكان \nلاحول ولا قوة إلا بالله'
- 'يا بيك عّم تخبرنا عن شي ما فينا تعملو نحن ماًعندنا نواب ولا وزراء بمثلونا بالدولة الا اذا زهقان وعبالك ليك'
- 'جوز كذابين منافقين...'
|
negative |
- 'ربي لا تجعلني أسيء الظن بأحد ولا تجعل في قلبي شيئا على أحد ، اللهم أسألك قلباً نقياً صافيا'
- 'هشام حداد عامل فيها جون ستيوارت'
- ' بحياة اختك من وين بتجيبي اخبارك؟؟ من صغري وانا عبالي كون... LINK'
|
Evaluation
Metrics
Label |
Accuracy |
all |
0.8398 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("akhooli/setfit_ar_ubc_hs")
preds = model("شيوعي
علماني
مسيحي
انصار سنه
صوفي
يمثلك التجمع
لا يمثلك التجمع
اهلا بكم جميعا فنحن نريد بناء وطن ❤")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
1 |
18.8448 |
185 |
Label |
Training Sample Count |
negative |
5200 |
positive |
4943 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: 6000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_hate_52k_ubc_6k
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0003 |
1 |
0.297 |
- |
0.0333 |
100 |
0.2741 |
- |
0.0667 |
200 |
0.2178 |
- |
0.1 |
300 |
0.1724 |
- |
0.1333 |
400 |
0.1449 |
- |
0.1667 |
500 |
0.1137 |
- |
0.2 |
600 |
0.0902 |
- |
0.2333 |
700 |
0.0708 |
- |
0.2667 |
800 |
0.0535 |
- |
0.3 |
900 |
0.0483 |
- |
0.3333 |
1000 |
0.0386 |
- |
0.3667 |
1100 |
0.0319 |
- |
0.4 |
1200 |
0.0279 |
- |
0.4333 |
1300 |
0.0201 |
- |
0.4667 |
1400 |
0.0234 |
- |
0.5 |
1500 |
0.0151 |
- |
0.5333 |
1600 |
0.0151 |
- |
0.5667 |
1700 |
0.0137 |
- |
0.6 |
1800 |
0.0117 |
- |
0.6333 |
1900 |
0.011 |
- |
0.6667 |
2000 |
0.0097 |
- |
0.7 |
2100 |
0.0077 |
- |
0.7333 |
2200 |
0.0089 |
- |
0.7667 |
2300 |
0.0069 |
- |
0.8 |
2400 |
0.0064 |
- |
0.8333 |
2500 |
0.0083 |
- |
0.8667 |
2600 |
0.0061 |
- |
0.9 |
2700 |
0.0063 |
- |
0.9333 |
2800 |
0.0051 |
- |
0.9667 |
2900 |
0.0047 |
- |
1.0 |
3000 |
0.0044 |
- |
1.0333 |
3100 |
0.0035 |
- |
1.0667 |
3200 |
0.0034 |
- |
1.1 |
3300 |
0.0035 |
- |
1.1333 |
3400 |
0.0043 |
- |
1.1667 |
3500 |
0.0035 |
- |
1.2 |
3600 |
0.0024 |
- |
1.2333 |
3700 |
0.003 |
- |
1.2667 |
3800 |
0.002 |
- |
1.3 |
3900 |
0.0029 |
- |
1.3333 |
4000 |
0.003 |
- |
1.3667 |
4100 |
0.002 |
- |
1.4 |
4200 |
0.0022 |
- |
1.4333 |
4300 |
0.0027 |
- |
1.4667 |
4400 |
0.004 |
- |
1.5 |
4500 |
0.001 |
- |
1.5333 |
4600 |
0.0027 |
- |
1.5667 |
4700 |
0.0027 |
- |
1.6 |
4800 |
0.0014 |
- |
1.6333 |
4900 |
0.0022 |
- |
1.6667 |
5000 |
0.0027 |
- |
1.7 |
5100 |
0.0018 |
- |
1.7333 |
5200 |
0.0018 |
- |
1.7667 |
5300 |
0.0012 |
- |
1.8 |
5400 |
0.0014 |
- |
1.8333 |
5500 |
0.0015 |
- |
1.8667 |
5600 |
0.0009 |
- |
1.9 |
5700 |
0.0012 |
- |
1.9333 |
5800 |
0.0009 |
- |
1.9667 |
5900 |
0.001 |
- |
2.0 |
6000 |
0.0007 |
- |
Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.3.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}