XLM-RoBERTa Fine-tuned on Ugandan Languages

This model is XLM-RoBERTa-base fine-tuned on a comprehensive dataset of Ugandan languages.

Usage

from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-uganda-languages")
model = AutoModelForMaskedLM.from_pretrained("xlm-roberta-uganda-languages")

fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
result = fill_mask("Abantu b'omubyalo tibatera kwikiriza [MASK] muyaaka.")
print(result)

Training Details

  • Training Steps: N/A
  • Training Loss: 2.1567
  • Learning Rate: 5e-05
  • Batch Size: 8
  • Epochs: 3
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support