metadata
license: apache-2.0
tags:
- mergekit
- lazymergekit
- akameswa/mistral-7b-instruct-javascript-16bit
- akameswa/mistral-7b-instruct-java-16bit
- akameswa/mistral-7b-instruct-cpp-16bit
- akameswa/mistral-7b-instruct-python-16bit
mixtral-4x7b-instruct-code
mixtral-4x7b-instruct-code is a MoE of the following models using mergekit:
- akameswa/mistral-7b-instruct-javascript-16bit
- akameswa/mistral-7b-instruct-java-16bit
- akameswa/mistral-7b-instruct-cpp-16bit
- akameswa/mistral-7b-instruct-python-16bit
🧩 Configuration
base_model: akameswa/mistral-7b-instruct-v0.2-bnb-16bit
gate_mode: hidden
dtype: float16
experts:
- source_model: akameswa/mistral-7b-instruct-javascript-16bit
positive_prompts: ["You are helpful a coding assistant good at javascript"]
- source_model: akameswa/mistral-7b-instruct-java-16bit
positive_prompts: ["You are helpful a coding assistant good at java"]
- source_model: akameswa/mistral-7b-instruct-cpp-16bit
positive_prompts: ["You are helpful a coding assistant good at cpp"]
- source_model: akameswa/mistral-7b-instruct-python-16bit
positive_prompts: ["You are helpful a coding assistant good at python"]
Inference
from transformers import AutoTokenizer
import transformers
import torch
model = "akameswa/mixtral-4x7b-instruct-code-trial"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
model_kwargs={"load_in_4bit": True},
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)