mnist-mobilevit

This model is a fine-tuned version of apple/mobilevit-xx-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0185
  • Accuracy: 0.9929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0008
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.026 0.2132 100 0.0458 0.9867
0.0232 0.4264 200 0.0453 0.9867
0.0277 0.6397 300 0.0484 0.9863
0.0293 0.8529 400 0.0469 0.9865
0.0235 1.0661 500 0.0288 0.9899
0.0203 1.2793 600 0.0253 0.9924
0.0182 1.4925 700 0.0286 0.9916
0.0205 1.7058 800 0.0203 0.9935
0.0162 1.9190 900 0.0238 0.9913
0.0118 2.1322 1000 0.0247 0.9916
0.0121 2.3454 1100 0.0194 0.9932
0.0154 2.5586 1200 0.0194 0.9933
0.015 2.7719 1300 0.0216 0.9933
0.0145 2.9851 1400 0.0238 0.9919
0.0098 3.1983 1500 0.0208 0.993
0.0093 3.4115 1600 0.0218 0.9929
0.0073 3.6247 1700 0.0189 0.9933
0.008 3.8380 1800 0.0194 0.9932
0.006 4.0512 1900 0.0183 0.9938
0.0063 4.2644 2000 0.0184 0.9934
0.0043 4.4776 2100 0.0184 0.9932
0.0035 4.6908 2200 0.0183 0.9931
0.0061 4.9041 2300 0.0184 0.9931

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
958k params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for akahana/mnist-mobilevit

Finetuned
(10)
this model