Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct
This model is a fine-tuned version of Qwen/Qwen3-32B on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets. It achieves the following results on the evaluation set:
- Loss: 0.6417
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9564 | 0.0575 | 10 | 1.0507 |
0.806 | 0.1149 | 20 | 0.8268 |
0.7551 | 0.1724 | 30 | 0.7598 |
0.7158 | 0.2299 | 40 | 0.7396 |
0.7217 | 0.2874 | 50 | 0.7252 |
0.7078 | 0.3448 | 60 | 0.7130 |
0.6719 | 0.4023 | 70 | 0.7029 |
0.6855 | 0.4598 | 80 | 0.6964 |
0.7328 | 0.5172 | 90 | 0.6907 |
0.6663 | 0.5747 | 100 | 0.6848 |
0.7049 | 0.6322 | 110 | 0.6792 |
0.6772 | 0.6897 | 120 | 0.6751 |
0.687 | 0.7471 | 130 | 0.6721 |
0.6786 | 0.8046 | 140 | 0.6700 |
0.6389 | 0.8621 | 150 | 0.6672 |
0.6673 | 0.9195 | 160 | 0.6649 |
0.6711 | 0.9770 | 170 | 0.6633 |
0.6614 | 1.0345 | 180 | 0.6615 |
0.6219 | 1.0920 | 190 | 0.6602 |
0.6542 | 1.1494 | 200 | 0.6587 |
0.6596 | 1.2069 | 210 | 0.6572 |
0.6526 | 1.2644 | 220 | 0.6567 |
0.657 | 1.3218 | 230 | 0.6551 |
0.6124 | 1.3793 | 240 | 0.6537 |
0.6489 | 1.4368 | 250 | 0.6526 |
0.614 | 1.4943 | 260 | 0.6515 |
0.656 | 1.5517 | 270 | 0.6504 |
0.6255 | 1.6092 | 280 | 0.6492 |
0.6419 | 1.6667 | 290 | 0.6486 |
0.6275 | 1.7241 | 300 | 0.6473 |
0.6324 | 1.7816 | 310 | 0.6466 |
0.6334 | 1.8391 | 320 | 0.6461 |
0.6213 | 1.8966 | 330 | 0.6452 |
0.6269 | 1.9540 | 340 | 0.6443 |
0.6408 | 2.0115 | 350 | 0.6437 |
0.6213 | 2.0690 | 360 | 0.6441 |
0.6146 | 2.1264 | 370 | 0.6440 |
0.6572 | 2.1839 | 380 | 0.6438 |
0.6264 | 2.2414 | 390 | 0.6435 |
0.6051 | 2.2989 | 400 | 0.6434 |
0.5983 | 2.3563 | 410 | 0.6429 |
0.6388 | 2.4138 | 420 | 0.6425 |
0.6227 | 2.4713 | 430 | 0.6425 |
0.6335 | 2.5287 | 440 | 0.6421 |
0.6247 | 2.5862 | 450 | 0.6420 |
0.6404 | 2.6437 | 460 | 0.6418 |
0.6218 | 2.7011 | 470 | 0.6418 |
0.6368 | 2.7586 | 480 | 0.6417 |
0.6191 | 2.8161 | 490 | 0.6417 |
0.6234 | 2.8736 | 500 | 0.6417 |
0.6079 | 2.9310 | 510 | 0.6417 |
0.6243 | 2.9885 | 520 | 0.6417 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for airesearch/Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct
Base model
Qwen/Qwen3-32B