Sentence Similarity
sentence-transformers
PyTorch
English
mpnet
feature-extraction
Inference Endpoints

All-mpnet-base-v2 model fine-tuned for questions clustering

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model is named all-mpnet-base-questions-clustering-en since it is a Sentence Transformers model specifically fine-tuned for a questions clustering task. Three public dataset (Quora, WikiAnswer and StackExchange) has been used to enhance the model performance specifically in mapping questions with similar meanings.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('aiknowyou/all-mpnet-base-questions-clustering-en')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

The present model has been evaluated by employing a test set belonging to the WikiAnswer dataset. The evaluation results are the following:

[ { "epoch": 1, "cossim_accuracy": 0.9931843415744172, "cossim_accuracy_threshold": 0.35143423080444336, "cossim_f1": 0.9897547191636324, "cossim_precision": 0.9913437348280885, "cossim_recall": 0.9881707893839572, "cossim_f1_threshold": 0.35143423080444336, "cossim_ap": 0.9989950013637923, "manhattan_accuracy": 0.9934042015236294, "manhattan_accuracy_threshold": 24.160316467285156, "manhattan_f1": 0.9900818249442103, "manhattan_precision": 0.9920113508380628, "manhattan_recall": 0.9881597905828264, "manhattan_f1_threshold": 24.160316467285156, "manhattan_ap": 0.9990576126715013, "euclidean_accuracy": 0.9931843415744172, "euclidean_accuracy_threshold": 1.1389167308807373, "euclidean_f1": 0.9897547191636324, "euclidean_precision": 0.9913437348280885, "euclidean_recall": 0.9881707893839572, "euclidean_f1_threshold": 1.1389167308807373, "euclidean_ap": 0.9989921332302106, "dot_accuracy": 0.9931843415744172, "dot_accuracy_threshold": 0.35143429040908813, "dot_f1": 0.9897547191636324, "dot_precision": 0.9913437348280885, "dot_recall": 0.9881707893839572, "dot_f1_threshold": 0.35143429040908813, "dot_ap": 0.9989933009226604 } ]

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 34123 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

DataLoader:

torch.utils.data.dataloader.DataLoader of length 51184 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss

Parameters of the fit()-Method:

{
    "epochs": 2,
    "evaluation_steps": 0,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Contribution

Thanks to @tradicio for adding this model.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Downloads last month
333
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train aiknowyou/all-mpnet-base-questions-clustering-en