MultiIndicWikiBioSS
MultiIndicWikiBioSS is a multilingual, sequence-to-sequence pre-trained model, a IndicBARTSS checkpoint fine-tuned on the 9 languages of IndicWikiBio dataset. For fine-tuning details, see the paper. You can use MultiIndicWikiBioSS to build biography generation applications for Indian languages by fine-tuning the model with supervised training data. Some salient features of the MultiIndicWikiBioSS are:
- Supported languages: Assamese, Bengali, Hindi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5.
- The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding.
- Fine-tuned on an Indic language corpora (34,653 examples).
- Unlike ai4bharat/MultiIndicWikiBioUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari.
You can read more about MultiIndicWikiBioSS in this paper.
Using this model in transformers
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioSS", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioSS", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicWikiBioSS")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicWikiBioSS")
# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2as>', '<2bn>', '<2hi>', '<2kn>', '<2ml>', '<2or>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
inp = tokenizer("<TAG> name </TAG> भीखा लाल <TAG> office </TAG> विधायक - 318 - हसनगंज विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश <TAG> term </TAG> 1957 से 1962 <TAG> nationality </TAG> भारतीय</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
out = tokenizer("<2hi> भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
# For loss
model_outputs.loss ## This is not label smoothed.
# For logits
model_outputs.logits
# For generation. Pardon the messiness. Note the decoder_start_token_id.
model.eval() # Set dropouts to zero
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # __भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे।
Benchmarks
Scores on the IndicWikiBio
test sets are as follows:
Language | RougeL |
---|---|
as | 56.50 |
bn | 56.58 |
hi | 67.34 |
kn | 39.37 |
ml | 38.42 |
or | 70.71 |
pa | 52.78 |
ta | 51.11 |
te | 51.72 |
Citation
If you use this model, please cite the following paper:
@inproceedings{Kumar2022IndicNLGSM,
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
year={2022},
url = "https://arxiv.org/abs/2203.05437"
}
License
The model is available under the MIT License.
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.