You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Llama3_devops

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3252

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 100
  • training_steps: 12001
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.4137 0.0612 100 1.7127
1.4861 0.1224 200 1.6550
1.3809 0.1837 300 1.6320
1.6918 0.2449 400 1.6155
1.5341 0.3061 500 1.6085
1.326 0.3673 600 1.6069
1.4157 0.4285 700 1.6039
1.477 0.4897 800 1.5980
2.091 0.5510 900 1.5930
1.4464 0.6122 1000 1.5901
1.5648 0.6734 1100 1.5888
1.7804 0.7346 1200 1.5885
1.7443 0.7958 1300 1.5874
1.721 0.8571 1400 1.5850
1.5615 0.9183 1500 1.5828
1.5138 0.9795 1600 1.5816
2.0057 1.0407 1700 1.5811
1.6474 1.1019 1800 1.5811
1.8227 1.1635 1900 1.5812
1.3724 1.2247 2000 1.5799
1.2722 1.2859 2100 1.5790
1.5611 1.3471 2200 1.5784
1.5327 1.4083 2300 1.5782
1.5264 1.4695 2400 1.5782
1.5766 1.5308 2500 1.5779
1.7018 1.5920 2600 1.5772
1.201 1.6532 2700 1.5765
1.4864 1.7144 2800 1.5762
1.2907 1.7756 2900 1.5760
1.6052 1.8369 3000 1.5760
1.3841 1.3711 3100 1.3650
1.3509 1.4153 3200 1.3555
1.349 1.4595 3300 1.3518
1.4748 1.5038 3400 1.3499
1.0276 1.5480 3500 1.3492
1.3901 1.5922 3600 1.3491
1.2557 1.6364 3700 1.3447
1.146 1.6807 3800 1.3422
1.3166 1.7249 3900 1.3408
1.4498 1.7691 4000 1.3401
1.2284 1.8134 4100 1.3399
1.2182 1.8576 4200 1.3398
1.2163 1.9018 4300 1.3379
1.2242 1.9460 4400 1.3367
1.2829 1.9903 4500 1.3360
1.214 2.0345 4600 1.3356
1.2161 2.0787 4700 1.3355
1.2942 2.1230 4800 1.3355
1.2288 2.1672 4900 1.3343
1.3177 2.2114 5000 1.3337
1.3833 2.2556 5100 1.3332
1.658 2.2999 5200 1.3329
1.3888 2.3441 5300 1.3329
1.3027 2.3883 5400 1.3328
1.4974 2.4326 5500 1.3321
1.1546 2.4768 5600 1.3316
1.2156 2.5210 5700 1.3313
1.3549 2.5652 5800 1.3311
1.3213 2.6095 5900 1.3310
1.3492 2.6537 6000 1.3310
1.3454 2.6979 6100 1.3306
1.4238 2.7421 6200 1.3302
1.4476 2.7864 6300 1.3299
1.2525 2.8306 6400 1.3298
1.343 2.8748 6500 1.3298
1.3299 2.9191 6600 1.3298
1.4081 2.9633 6700 1.3293
1.4621 3.0075 6800 1.3290
1.0876 3.0517 6900 1.3289
1.3061 3.0960 7000 1.3288
1.2202 3.1402 7100 1.3287
1.3105 3.1844 7200 1.3287
1.3631 3.2287 7300 1.3284
1.3136 3.2729 7400 1.3282
1.442 3.3171 7500 1.3281
1.3141 3.3613 7600 1.3280
1.3445 3.4056 7700 1.3280
1.2843 3.4498 7800 1.3279
1.342 3.4940 7900 1.3277
1.2877 3.5383 8000 1.3275
1.4434 3.5825 8100 1.3274
1.2827 3.6267 8200 1.3273
1.1758 3.6709 8300 1.3273
1.3382 3.7152 8400 1.3273
1.2126 3.7594 8500 1.3271
1.4859 3.8036 8600 1.3270
1.1627 3.8479 8700 1.3269
1.5215 3.8921 8800 1.3268
1.6232 3.9363 8900 1.3268
1.3434 3.9805 9000 1.3268
1.1927 4.0248 9100 1.3267
1.2415 4.0690 9200 1.3265
1.1639 4.1132 9300 1.3264
1.2402 4.1575 9400 1.3264
1.295 4.2017 9500 1.3264
1.1189 4.2459 9600 1.3264
1.2794 4.2901 9700 1.3263
1.1904 4.3344 9800 1.3261
1.1547 4.3786 9900 1.3261
1.3298 4.4228 10000 1.3260
1.1915 4.4670 10100 1.3260
1.2256 4.5113 10200 1.3260
1.3068 4.5555 10300 1.3259
1.5124 4.5997 10400 1.3258
1.3894 4.6440 10500 1.3258
1.1934 4.6882 10600 1.3257
1.2746 4.7324 10700 1.3257
1.2689 4.7766 10800 1.3257
1.3315 4.8209 10900 1.3256
1.4784 4.8651 11000 1.3255
1.2925 4.9093 11100 1.3255
1.2004 4.9536 11200 1.3254
1.4289 4.9978 11300 1.3254
1.354 5.0420 11400 1.3254
1.1891 5.0862 11500 1.3253
1.3498 5.1305 11600 1.3253
1.3814 5.1747 11700 1.3252
1.4559 5.2189 11800 1.3252
1.2006 5.2632 11900 1.3252
1.3107 5.3074 12000 1.3252

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ahmedgongi/Llama3_devops

Adapter
(646)
this model

Collection including ahmedgongi/Llama3_devops