Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Meta-Llama-3.1-8B # same model you originally used
# Load your previously fine-tuned model as a PEFT adapter
peft_model: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e4
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: ahmedelgebaly/HotpotQA_Alpaca
    type: alpaca
    split: train

test_datasets:
  - path: ahmedelgebaly/HotpotQA_Alpaca
    type: alpaca
    split: validation

dataset_prepared_path:
output_dir: ./outputs/qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: llama-3.1-8b-squadv2_SciQ_HotpotQa_e4
wandb_entity:
wandb_watch:
wandb_name: llama-3.1-8b-squadv2_SciQ_HotpotQa_e4
wandb_log_model:

hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_HotpotQa_e4

gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|end_of_text|>"

llama-3.1-8b-squadv2_SciQ_HotpotQa_e4

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.5074 0.0005 1 1.7127
0.6179 0.2501 486 0.7903
0.6868 0.5001 972 0.7563
0.5731 0.7502 1458 0.7380
0.6158 1.0003 1944 0.7229
0.4967 1.2483 2430 0.7308
0.556 1.4983 2916 0.7216
0.5329 1.7484 3402 0.7161
0.4686 1.9985 3888 0.7127
0.3956 2.2470 4374 0.7788
0.3789 2.4970 4860 0.7758
0.3709 2.7471 5346 0.7767
0.3687 2.9972 5832 0.7779
0.2902 3.2449 6318 0.9022
0.2733 3.4950 6804 0.8944
0.2309 3.7450 7290 0.8977

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_HotpotQa_e4

Adapter
(443)
this model