Meeting Summarizer - Fine-tuned on MeetingBank

This model was fine-tuned on the MeetingBank dataset to generate concise summaries of meeting transcripts.

Performance

Metric Validation Test
ROUGE-1 49.99 49.26
ROUGE-2 37.42 37.07
ROUGE-L 45.45 45.01
ROUGE-Lsum 46.86 46.30

Usage

from transformers import pipeline

summarizer = pipeline("summarization", model="ahmeddeldalyyy/meeting-summarizer-meetingbank")
meeting_transcript = """
[Your meeting transcript here]
"""

summary = summarizer(meeting_transcript, max_length=142, min_length=56, num_beams=4, length_penalty=2.0)
print(summary[0]['summary_text'])

Model Details

  • Base model: BART
  • Fine-tuned on: MeetingBank dataset (city council meetings)
  • Parameters:
    • max_input_length: 1,024 tokens
    • min_output_length: 56 tokens
    • max_output_length: 142 tokens
    • beam width: 4
    • length penalty: 2.0
    • learning rate: 2.5e-6
    • trained for 2 epochs
Downloads last month
21
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train ahmeddeldalyyy/meeting-summarizer-meetingbank