AST-based Speaker Identification on AMI

Model description

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593
for speaker classification on the AMI Meeting Corpus. It was trained on 50 speakers (adjust num_labels if different), using 128-bin mel-spectrograms of 1024 frames.

  • Base architecture: Audio Spectrogram Transformer (AST)
  • Training: ~10 epochs, batch size=4, learning rate=1e-5, AdamW optimizer, mixed precision
  • Data: Stratified samples from AMI train/validation/test splits
  • Performance: Not good, this was just a small experiment for diarization

How to use

from transformers import AutoProcessor, ASTForAudioClassification
import torch
import numpy as np

# 1) Load the model and processor
MODEL_ID = "agutig/AST_diarizer"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model     = ASTForAudioClassification.from_pretrained(MODEL_ID)
model.eval()

# 2) Prepare a 1-second audio sample (or load your own)
sr = 16000
audio = np.random.randn(sr).astype(np.float32)
# Alternatively:
# import librosa
# audio, _ = librosa.load("your_audio.wav", sr=sr)

# 3) Preprocess and run inference
inputs = processor(audio, sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits  # shape [1, num_labels]
    probs  = torch.softmax(logits, dim=-1)[0]
    pred_i = int(probs.argmax())

print(f"Predicted speaker index: {pred_i}")

Usage with pipeline

from transformers import pipeline

speaker_id = pipeline(
    task="audio-classification",
    model="agutig/AST_diarizer",
    return_all_scores=True
)

results = speaker_id("path/to/audio.wav")
print(results)

Evaluation & Benchmarks

Clasification: image/png

image/png

Embeddings

image/png

image/png

License

  • Model: Apache 2.0
  • Base code (AST AudioSet): MIT License
Downloads last month
14
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for agutig/AST_diarizer

Finetuned
(124)
this model

Dataset used to train agutig/AST_diarizer