|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: agentlans/deberta-v3-base-zyda-2-v2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: deberta-v3-base-zyda-2-v2-text-quality-v3 |
|
results: [] |
|
datasets: |
|
- agentlans/text-quality-v3 |
|
language: |
|
- en |
|
--- |
|
# DeBERTa Text Quality Model |
|
|
|
This model rates the **quality of English text** for AI learning. Input a text string, and it outputs a numeric quality score reflecting overall informativeness and usefulness. |
|
|
|
## Performance |
|
|
|
On the evaluation set, it achieved: |
|
- Loss: 0.1408 |
|
- MSE: 0.1408 |
|
- Combined Score: 0.1408 |
|
- Tokens processed during training: 102,398,720 |
|
|
|
## Usage Example |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model_name = "agentlans/deberta-v3-base-quality-v3" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# Higher scores indicate higher text quality. |
|
# The sign of the score has no particular meaning. |
|
# For example, a negative score doesn't necessarily mean that the text is low quality. |
|
def quality(text): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device) |
|
with torch.no_grad(): |
|
score = model(**inputs).logits.squeeze().cpu().item() |
|
return score |
|
|
|
print(quality("Your text here.")) |
|
``` |
|
|
|
## Limitations |
|
|
|
- Works best on non-fiction and general-purpose texts. |
|
- Scores give an overall quality estimate but don’t explain why. |
|
- The model is large and slow; for faster results with similar accuracy, try [agentlans/GIST-all-MiniLM-L6-v2-quality-v3](https://huggingface.co/agentlans/GIST-all-MiniLM-L6-v2-quality-v3). |
|
- Check for biases and suitability before use. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Combined Score | Input Tokens Seen | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:|:--------------:|:-----------------:| |
|
| 0.1635 | 1.0 | 10000 | 0.1854 | 0.1854 | 0.1854 | 10239872 | |
|
| 0.1241 | 2.0 | 20000 | 0.1408 | 0.1408 | 0.1408 | 20479744 | |
|
| 0.0882 | 3.0 | 30000 | 0.1747 | 0.1747 | 0.1747 | 30719616 | |
|
| 0.054 | 4.0 | 40000 | 0.1528 | 0.1528 | 0.1528 | 40959488 | |
|
| 0.0372 | 5.0 | 50000 | 0.1480 | 0.1480 | 0.1480 | 51199360 | |
|
| 0.0263 | 6.0 | 60000 | 0.1524 | 0.1524 | 0.1524 | 61439232 | |
|
| 0.0203 | 7.0 | 70000 | 0.1495 | 0.1495 | 0.1495 | 71679104 | |
|
| 0.0135 | 8.0 | 80000 | 0.1482 | 0.1482 | 0.1482 | 81918976 | |
|
| 0.0098 | 9.0 | 90000 | 0.1450 | 0.1450 | 0.1450 | 92158848 | |
|
| 0.0073 | 10.0 | 100000 | 0.1453 | 0.1453 | 0.1453 | 102398720 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |