Adrian's picture
4 12

Adrian

adriansanz

AI & ML interests

None yet

Recent Activity

updated a Space 19 days ago
adriansanz/agents-4
published a Space 20 days ago
adriansanz/agents-4
updated a Space 2 months ago
adriansanz/bicing_agent
View all activity

Organizations

Hugging Face Discord Community's profile picture Hugging Face MCP Course's profile picture

adriansanz's activity

reacted to singhsidhukuldeep's post with ๐Ÿ”ฅ 3 months ago
view post
Post
3522
O1 Embedder: Transforming Retrieval Models with Reasoning Capabilities

Researchers from University of Science and Technology of China and Beijing Academy of Artificial Intelligence have developed a novel retrieval model that mimics the slow-thinking capabilities of reasoning-focused LLMs like OpenAI's O1 and DeepSeek's R1.

Unlike traditional embedding models that directly match queries with documents, O1 Embedder first generates thoughtful reflections about the query before performing retrieval. This two-step process significantly improves performance on complex retrieval tasks, especially those requiring intensive reasoning or zero-shot generalization to new domains.

The technical implementation is fascinating:

- The model integrates two essential functions: Thinking and Embedding
- It uses an "Exploration-Refinement" data synthesis workflow where initial thoughts are generated by an LLM and refined by a retrieval committee
- A multi-task training method fine-tunes a pre-trained LLM to generate retrieval thoughts via behavior cloning while simultaneously learning embedding capabilities through contrastive learning
- Memory-efficient joint training enables both tasks to share encoding results, dramatically increasing batch size

The results are impressive - O1 Embedder outperforms existing methods across 12 datasets in both in-domain and out-of-domain scenarios. For example, it achieves a 3.9% improvement on Natural Questions and a 3.0% boost on HotPotQA compared to models without thinking capabilities.

This approach represents a significant paradigm shift in retrieval technology, bridging the gap between traditional dense retrieval and the reasoning capabilities of large language models.

What do you think about this approach? Could "thinking before retrieval" transform how we build search systems?
reacted to dylanebert's post with ๐Ÿ”ฅ 4 months ago
reacted to cutechicken's post with โค๏ธ 6 months ago
view post
Post
2994
๐Ÿš€ RAGOndevice: High-Performance Local AI Document Analysis Assistant
๐Ÿ’ซ Core Value
RAGOndevice is a high-performance AI system running locally without cloud dependency. Using CohereForAI's optimized 7B model, it enables professional-grade document analysis on standard PCs. โœจ
๐ŸŒŸ Ondevice AI Advantages
1. ๐Ÿ”‹ Efficient Resource Utilization

๐ŸŽฏ Optimized 7B Model: Runs on standard PCs
โšก Local Processing: Instant response without cloud
๐Ÿ’ป Low-Spec Compatible: Performs well on regular GPUs
๐Ÿ”„ Optimized Memory: Ensures stable operation

2. ๐Ÿ›ก๏ธ Data Security & Cost Efficiency

๐Ÿ”’ Complete Privacy: No external data transmission
๐ŸŒ Offline Operation: No internet required
๐Ÿ’ฐ No Subscription: One-time installation
โš™๏ธ Resource Optimization: Uses existing hardware

๐ŸŽฎ Key Features
1. ๐Ÿ“Š Powerful Document Analysis

๐Ÿ“ Multi-Format Support: TXT, CSV, PDF, Parquet
๐Ÿง  Intelligent Analysis: Automatic structure recognition
๐Ÿ‘๏ธ OCR Support: Advanced PDF text extraction
๐Ÿ’ฌ Real-time Chat: Natural language interaction

2. ๐Ÿ” Local RAG System

๐ŸŽฏ Efficient Search: TF-IDF based local search
๐Ÿงฉ Context Understanding: Accurate information retrieval
๐Ÿ“š Wikipedia Integration: Rich background knowledge

๐ŸŽฏ Use Cases

๐Ÿข Enterprise: Secure confidential document processing
๐Ÿ”ฌ Personal Research: Private data analysis
๐Ÿ“š Education: Personal learning material analysis
๐Ÿ’ป Development: Local codebase analysis

โญ Differentiators

๐Ÿƒโ€โ™‚๏ธ Independent Operation: Zero cloud dependency
โšก Instant Response: No network latency
๐Ÿ” Complete Security: Full data control
๐Ÿ’Ž Cost Efficiency: No ongoing costs

๐Ÿ”ฎ Future Plans

๐Ÿš€ Enhanced model optimization
๐Ÿ“š Local knowledge base expansion
โšก Hardware optimization
๐Ÿ“ Extended file support


๐ŸŒŸ RAGOndevice democratizes high-performance AI, providing the optimal local AI solution for security-sensitive environments. ๐Ÿš€

๐Ÿ”ฅ Power of Local AI: Experience enterprise-grade AI capabilities right on your device!

VIDraft/RAGOndevice