2404v7
This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6435
- Accuracy: 0.8487
- Precision: 0.8488
- Recall: 0.8487
- F1: 0.8487
- Ratio: 0.4916
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 10
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|
3.5609 | 0.2597 | 10 | 1.6738 | 0.5168 | 0.5191 | 0.5168 | 0.5020 | 0.3277 |
1.4146 | 0.5195 | 20 | 0.9720 | 0.5294 | 0.5309 | 0.5294 | 0.5237 | 0.6092 |
0.924 | 0.7792 | 30 | 0.9377 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 |
0.9189 | 1.0390 | 40 | 0.8705 | 0.5042 | 0.7511 | 0.5042 | 0.3426 | 0.0042 |
0.8741 | 1.2987 | 50 | 0.8415 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 |
0.8001 | 1.5584 | 60 | 0.7613 | 0.7311 | 0.7640 | 0.7311 | 0.7224 | 0.6765 |
0.7156 | 1.8182 | 70 | 0.6827 | 0.7773 | 0.8070 | 0.7773 | 0.7718 | 0.3445 |
0.7028 | 2.0779 | 80 | 0.6722 | 0.7941 | 0.7967 | 0.7941 | 0.7937 | 0.4538 |
0.5612 | 2.3377 | 90 | 0.6600 | 0.7689 | 0.7776 | 0.7689 | 0.7671 | 0.5882 |
0.5967 | 2.5974 | 100 | 0.6264 | 0.8067 | 0.8075 | 0.8067 | 0.8066 | 0.5252 |
0.6661 | 2.8571 | 110 | 0.6225 | 0.8193 | 0.8260 | 0.8193 | 0.8184 | 0.4286 |
0.6454 | 3.1169 | 120 | 0.6108 | 0.8109 | 0.8336 | 0.8109 | 0.8077 | 0.6303 |
0.541 | 3.3766 | 130 | 0.6002 | 0.8235 | 0.8311 | 0.8235 | 0.8225 | 0.4244 |
0.538 | 3.6364 | 140 | 0.5880 | 0.8403 | 0.8428 | 0.8403 | 0.8401 | 0.5420 |
0.5157 | 3.8961 | 150 | 0.5845 | 0.8529 | 0.8603 | 0.8529 | 0.8522 | 0.4286 |
0.4868 | 4.1558 | 160 | 0.6059 | 0.8403 | 0.8548 | 0.8403 | 0.8387 | 0.6008 |
0.4877 | 4.4156 | 170 | 0.5575 | 0.8571 | 0.8572 | 0.8571 | 0.8571 | 0.4916 |
0.4758 | 4.6753 | 180 | 0.5656 | 0.8403 | 0.8403 | 0.8403 | 0.8403 | 0.5 |
0.4686 | 4.9351 | 190 | 0.5736 | 0.8571 | 0.8581 | 0.8571 | 0.8571 | 0.5252 |
0.4311 | 5.1948 | 200 | 0.5755 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.5 |
0.4452 | 5.4545 | 210 | 0.6053 | 0.8487 | 0.8491 | 0.8487 | 0.8487 | 0.5168 |
0.4396 | 5.7143 | 220 | 0.5726 | 0.8613 | 0.8614 | 0.8613 | 0.8613 | 0.4958 |
0.4923 | 5.9740 | 230 | 0.5534 | 0.8487 | 0.8487 | 0.8487 | 0.8487 | 0.5 |
0.4002 | 6.2338 | 240 | 0.5841 | 0.8445 | 0.8446 | 0.8445 | 0.8445 | 0.5042 |
0.3887 | 6.4935 | 250 | 0.6092 | 0.8361 | 0.8402 | 0.8361 | 0.8356 | 0.5546 |
0.402 | 6.7532 | 260 | 0.6164 | 0.8445 | 0.8446 | 0.8445 | 0.8445 | 0.4958 |
0.4644 | 7.0130 | 270 | 0.6094 | 0.8571 | 0.8622 | 0.8571 | 0.8566 | 0.4412 |
0.3905 | 7.2727 | 280 | 0.5938 | 0.8487 | 0.8503 | 0.8487 | 0.8486 | 0.5336 |
0.3836 | 7.5325 | 290 | 0.6080 | 0.8487 | 0.8496 | 0.8487 | 0.8486 | 0.5252 |
0.3781 | 7.7922 | 300 | 0.6193 | 0.8529 | 0.8530 | 0.8529 | 0.8529 | 0.4958 |
0.4384 | 8.0519 | 310 | 0.6211 | 0.8529 | 0.8532 | 0.8529 | 0.8529 | 0.4874 |
0.3324 | 8.3117 | 320 | 0.6312 | 0.8445 | 0.8446 | 0.8445 | 0.8445 | 0.4958 |
0.3779 | 8.5714 | 330 | 0.6394 | 0.8529 | 0.8532 | 0.8529 | 0.8529 | 0.4874 |
0.3772 | 8.8312 | 340 | 0.6415 | 0.8529 | 0.8530 | 0.8529 | 0.8529 | 0.4958 |
0.3757 | 9.0909 | 350 | 0.6464 | 0.8403 | 0.8404 | 0.8403 | 0.8403 | 0.5084 |
0.3742 | 9.3506 | 360 | 0.6441 | 0.8487 | 0.8487 | 0.8487 | 0.8487 | 0.5 |
0.3647 | 9.6104 | 370 | 0.6437 | 0.8487 | 0.8488 | 0.8487 | 0.8487 | 0.4916 |
0.3502 | 9.8701 | 380 | 0.6435 | 0.8487 | 0.8488 | 0.8487 | 0.8487 | 0.4916 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 118
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for adriansanz/2404v7
Base model
projecte-aina/roberta-base-ca-v2-cased-te