Model Card for acuvity/model_integration_test
Model Details
Model Description
Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.4
- Developed by: Auto-Finetune Bot
- Funded by [optional]: Auto-Finetune Bot
- Shared by [optional]: Auto-Finetune Bot
- Model type: text-classification
- Language(s) (NLP): en
- License: Closed Source
- Finetuned from model [optional]: acuvity/model_integration_test
Model Sources [optional]
- Repository: acuvity/model_integration_test
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test")
model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
model.config.id2label[predicted_class_id]
from transformers import pipeline
classifier = pipeline("text-classification", model="acuvity/model_integration_test")
classifier("Hello, my dog is cute")
Training Details
Training Data
(New | v0.0.4) [https://huggingface.co/datasets/acuvity/New]
Training Procedure
Preprocessing [optional]
No modifications done on the dataset.
Training Hyperparameters
- Training regime: {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01}
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
(New | v0.0.4) [https://huggingface.co/datasets/acuvity/New]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
Auto Finetune Report for Prompt Injection
Model URL: acuvity/model_integration_test
Model Commit: v0.0.4
Quick Summary
Accuracy: 0.0008237232289950436 Regression: 0.0006873789967815756 Improvement: 0.0009149276196107874
Results Summary
Prompt Injection | v0.0.4 Results
accuracy | f1 | precision | recall | |
---|---|---|---|---|
New | 0.999176 | 0.998993 | 1 | 0.997988 |
Baseline | 0.999126 | 0.998993 | 1 | 0.997988 |
Feedback | 1 | 0 | 0 | 0 |
QA | 0.982216 | 0 | 0 | 0 |
PINT | 0.0701696 | 0.0790514 | 0.0421793 | 0.628272 |
Sanity | 0.630435 | 0.773333 | 0.630435 | 1 |
Prompt Injection | v0.0.3 Results
accuracy | f1 | precision | recall | |
---|---|---|---|---|
New | 0.998353 | 0.997988 | 1 | 0.995984 |
Baseline | 0.998252 | 0.997988 | 1 | 0.995984 |
Feedback | 1 | 0 | 0 | 0 |
QA | 0.98164 | 0 | 0 | 0 |
PINT | 0.0705022 | 0.0808944 | 0.0432337 | 0.627551 |
Sanity | 0.630435 | 0.773333 | 0.630435 | 1 |
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: Quadro P4000
- Hours used: 4 Hours
- Cloud Provider: Paperspace | Digital Ocean
- Compute Region: NY2
- Carbon Emitted: 0, we are carbon neutral
Technical Specifications [optional]
Model Architecture and Objective
acuvity/model_integration_test
Compute Infrastructure
0 | |
---|---|
platform | Linux |
platform-release | 5.15.0-130-generic |
platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 |
architecture | x86_64 |
processor | x86_64 |
ram | 29 GB |
Hardware
Quadro P4000
Software
0 | |
---|---|
python_version | 3.10.16 |
pytorch_version | 2.5.1+cu124 |
transformers_version | 4.47.1 |
datasets_version | 3.2.0 |
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
acuvity
Model Card Contact
- Downloads last month
- 33