bert-lora

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4540
  • Accuracy: 0.78

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.6659 0.64
No log 2.0 250 0.6518 0.64
No log 3.0 375 0.6353 0.66
0.6613 4.0 500 0.6126 0.7
0.6613 5.0 625 0.5862 0.7
0.6613 6.0 750 0.5677 0.68
0.6613 7.0 875 0.5350 0.72
0.5607 8.0 1000 0.5163 0.74
0.5607 9.0 1125 0.4980 0.74
0.5607 10.0 1250 0.4821 0.75
0.5607 11.0 1375 0.4738 0.77
0.4757 12.0 1500 0.4633 0.78
0.4757 13.0 1625 0.4574 0.78
0.4757 14.0 1750 0.4553 0.78
0.4757 15.0 1875 0.4540 0.78

Framework versions

  • PEFT 0.13.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for abhishekkumaribt/bert-lora

Adapter
(34)
this model