See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: true
chat_template: llama3
dataloader_num_workers: 24
dataset_prepared_path: null
datasets:
- data_files:
- e3e040151a7be6d4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e3e040151a7be6d4_train_data.json
type:
field_instruction: text
field_output: extracted
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: 300
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: abaddon182/4b8c8d36-9160-467d-80e4-ead059bfa212
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3000
micro_batch_size: 2
mlflow_experiment_name: /tmp/e3e040151a7be6d4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1000
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7f20767d-f9c0-42d6-8ba1-0f6d9bdd9674
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7f20767d-f9c0-42d6-8ba1-0f6d9bdd9674
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
4b8c8d36-9160-467d-80e4-ead059bfa212
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2459
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2072 | 0.0000 | 1 | 7.0553 |
0.0031 | 0.0068 | 300 | 0.3020 |
0.0206 | 0.0136 | 600 | 0.2902 |
0.005 | 0.0204 | 900 | 0.2684 |
0.0013 | 0.0272 | 1200 | 0.2660 |
0.0044 | 0.0340 | 1500 | 0.2627 |
0.0031 | 0.0408 | 1800 | 0.2501 |
0.0051 | 0.0477 | 2100 | 0.2499 |
0.0125 | 0.0545 | 2400 | 0.2471 |
0.0043 | 0.0613 | 2700 | 0.2448 |
0.0049 | 0.0681 | 3000 | 0.2459 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for abaddon182/4b8c8d36-9160-467d-80e4-ead059bfa212
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-1.5B-Instruct