🧩 Configuration
slices:
- sources:
- model: liminerity/M7-7b
layer_range: [0, 32]
- model: AurelPx/Percival_01-7b-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/M7-7b
parameters:
t:
- filter: self_attn
value: [0.4045760650767545, 0.7712356944737523, 0.7193211054804829, 0.8134825242788222, 0.21570627447195045]
- filter: mlp
value: [0.5954239349232455, 0.2287643055262477, 0.2806788945195171, 0.18651747572117783, 0.7842937255280495]
- value: 0.9726372903741539
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "aaron-di/Yamshadowexperiment28M70.4-0.77-0.72-0.81-0.22-0.97-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support