ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("aaa961/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'What motion did the court grant?',
'failure to state claims upon which relief can be granted. The court \ngranted the motion. \n \n5 \nII. \nThe Court Did Not Err by Dismissing the Case \n¶ 10 \nAl-Hamim contends that the court erred by granting the \nlandlords’ motion to dismiss. Specifically, he argues that the court \nerred by determining that the landlords did not breach the warranty',
'advance the development of artificial intelligence . . . to comprehensively address the national \nsecurity and defense needs of the United States.” Id. § 1051(b)(1). The Commission must report \nits findings and recommendations to the President and Congress. Id. § 1051(c)(1). \nThe Commission was originally set to end this October, but Congress recently extended',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5487 |
cosine_accuracy@3 | 0.6028 |
cosine_accuracy@5 | 0.6878 |
cosine_accuracy@10 | 0.7728 |
cosine_precision@1 | 0.5487 |
cosine_precision@3 | 0.5209 |
cosine_precision@5 | 0.3963 |
cosine_precision@10 | 0.2326 |
cosine_recall@1 | 0.1981 |
cosine_recall@3 | 0.5197 |
cosine_recall@5 | 0.6441 |
cosine_recall@10 | 0.7573 |
cosine_ndcg@10 | 0.6574 |
cosine_mrr@10 | 0.5991 |
cosine_map@100 | 0.6391 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5518 |
cosine_accuracy@3 | 0.592 |
cosine_accuracy@5 | 0.6832 |
cosine_accuracy@10 | 0.7666 |
cosine_precision@1 | 0.5518 |
cosine_precision@3 | 0.5188 |
cosine_precision@5 | 0.3913 |
cosine_precision@10 | 0.2315 |
cosine_recall@1 | 0.198 |
cosine_recall@3 | 0.5165 |
cosine_recall@5 | 0.6382 |
cosine_recall@10 | 0.7552 |
cosine_ndcg@10 | 0.6553 |
cosine_mrr@10 | 0.5981 |
cosine_map@100 | 0.6365 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5085 |
cosine_accuracy@3 | 0.558 |
cosine_accuracy@5 | 0.6522 |
cosine_accuracy@10 | 0.7218 |
cosine_precision@1 | 0.5085 |
cosine_precision@3 | 0.4838 |
cosine_precision@5 | 0.3716 |
cosine_precision@10 | 0.2168 |
cosine_recall@1 | 0.1826 |
cosine_recall@3 | 0.4821 |
cosine_recall@5 | 0.6047 |
cosine_recall@10 | 0.707 |
cosine_ndcg@10 | 0.6125 |
cosine_mrr@10 | 0.5575 |
cosine_map@100 | 0.6001 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4451 |
cosine_accuracy@3 | 0.4884 |
cosine_accuracy@5 | 0.5781 |
cosine_accuracy@10 | 0.6538 |
cosine_precision@1 | 0.4451 |
cosine_precision@3 | 0.4261 |
cosine_precision@5 | 0.3317 |
cosine_precision@10 | 0.1981 |
cosine_recall@1 | 0.1582 |
cosine_recall@3 | 0.4205 |
cosine_recall@5 | 0.5384 |
cosine_recall@10 | 0.644 |
cosine_ndcg@10 | 0.5485 |
cosine_mrr@10 | 0.4924 |
cosine_map@100 | 0.5357 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3385 |
cosine_accuracy@3 | 0.374 |
cosine_accuracy@5 | 0.456 |
cosine_accuracy@10 | 0.527 |
cosine_precision@1 | 0.3385 |
cosine_precision@3 | 0.3158 |
cosine_precision@5 | 0.2491 |
cosine_precision@10 | 0.1584 |
cosine_recall@1 | 0.1274 |
cosine_recall@3 | 0.3238 |
cosine_recall@5 | 0.4125 |
cosine_recall@10 | 0.5138 |
cosine_ndcg@10 | 0.4303 |
cosine_mrr@10 | 0.3789 |
cosine_map@100 | 0.4232 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 8 tokens
- mean: 16.57 tokens
- max: 41 tokens
- min: 15 tokens
- mean: 97.04 tokens
- max: 156 tokens
- Samples:
anchor positive Under what solicitations do all task orders qualify according to the Defendant?
orders. See SHS MJAR at 36–37; VCH MJAR at 36–37 (same). For the reasons discussed below,
this Court concludes that the correct interpretation of “feature” as used in Section 3306(c)(3) lies
between Plaintiffs’ and Defendant’s positions.
As Defendant argues all task orders contemplated under the Polaris Solicitations qualify asWhat type of project is related to the cost-reimbursement category?
2156–57, 2647–48. Further, offerors can earn additional points for Primary Relevant Experience
by submitting (1) projects completed for various government customers; (2) cost-reimbursement
12
projects; (3) task order awards on multiple-award contracts; (4) projects outside the contiguous
United States; (5) projects related to cybersecurity experience; and (6) projects demonstrating aWho drafted the one-sentence order that lacked stated reasons?
its discretion, a reviewing court looks to the trial court’s “stated justification for refusing to
modify” the order. Skolnick, 191 Ill. 2d at 226.
¶ 35
In the case at bar, the one-sentence April 25 order did not provide any reasons at all. The
losing party drafted the order without any stated reasons, although a lack of stated reasons may - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 78.6994 | - | - | - | - | - |
1.0 | 12 | - | 0.5978 | 0.5973 | 0.5636 | 0.4959 | 0.3714 |
1.7033 | 20 | 35.3464 | - | - | - | - | - |
2.0 | 24 | - | 0.6518 | 0.6459 | 0.6049 | 0.5403 | 0.4242 |
2.5275 | 30 | 27.0527 | - | - | - | - | - |
3.0 | 36 | - | 0.6577 | 0.6541 | 0.6116 | 0.5467 | 0.4295 |
3.3516 | 40 | 25.149 | - | - | - | - | - |
3.7033 | 44 | - | 0.6574 | 0.6553 | 0.6125 | 0.5485 | 0.4303 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu128
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for aaa961/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.549
- Cosine Accuracy@3 on dim 768self-reported0.603
- Cosine Accuracy@5 on dim 768self-reported0.688
- Cosine Accuracy@10 on dim 768self-reported0.773
- Cosine Precision@1 on dim 768self-reported0.549
- Cosine Precision@3 on dim 768self-reported0.521
- Cosine Precision@5 on dim 768self-reported0.396
- Cosine Precision@10 on dim 768self-reported0.233
- Cosine Recall@1 on dim 768self-reported0.198
- Cosine Recall@3 on dim 768self-reported0.520