code-bench-CodeGemma-7B-cgv1-ds
This model is a fine-tuned version of google/codegemma-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1137
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.7885 | 0.0530 | 50 | 3.2152 |
0.6747 | 0.1061 | 100 | 0.6309 |
0.5689 | 0.1591 | 150 | 0.5025 |
0.4619 | 0.2121 | 200 | 0.4133 |
0.4034 | 0.2652 | 250 | 0.3695 |
0.3182 | 0.3182 | 300 | 0.3194 |
0.2859 | 0.3713 | 350 | 0.2842 |
0.2577 | 0.4243 | 400 | 0.2579 |
0.2488 | 0.4773 | 450 | 0.2471 |
0.2357 | 0.5304 | 500 | 0.2397 |
0.2614 | 0.5834 | 550 | 0.2292 |
0.2205 | 0.6364 | 600 | 0.2252 |
0.218 | 0.6895 | 650 | 0.2235 |
0.2277 | 0.7425 | 700 | 0.2176 |
0.221 | 0.7955 | 750 | 0.2148 |
0.2109 | 0.8486 | 800 | 0.2103 |
0.2092 | 0.9016 | 850 | 0.2099 |
0.2046 | 0.9547 | 900 | 0.2039 |
0.1899 | 1.0077 | 950 | 0.2024 |
0.1844 | 1.0607 | 1000 | 0.1971 |
0.1785 | 1.1138 | 1050 | 0.1938 |
0.1852 | 1.1668 | 1100 | 0.1920 |
0.1885 | 1.2198 | 1150 | 0.1893 |
0.1859 | 1.2729 | 1200 | 0.1860 |
0.1813 | 1.3259 | 1250 | 0.1853 |
0.1587 | 1.3789 | 1300 | 0.1833 |
0.1631 | 1.4320 | 1350 | 0.1814 |
0.1693 | 1.4850 | 1400 | 0.1793 |
0.174 | 1.5381 | 1450 | 0.1774 |
0.1674 | 1.5911 | 1500 | 0.1750 |
0.1567 | 1.6441 | 1550 | 0.1732 |
0.1702 | 1.6972 | 1600 | 0.1718 |
0.161 | 1.7502 | 1650 | 0.1704 |
0.1656 | 1.8032 | 1700 | 0.1687 |
0.1704 | 1.8563 | 1750 | 0.1701 |
0.149 | 1.9093 | 1800 | 0.1658 |
0.1604 | 1.9623 | 1850 | 0.1632 |
0.1482 | 2.0154 | 1900 | 0.1636 |
0.1421 | 2.0684 | 1950 | 0.1614 |
0.1555 | 2.1215 | 2000 | 0.1603 |
0.1387 | 2.1745 | 2050 | 0.1588 |
0.1331 | 2.2275 | 2100 | 0.1587 |
0.1349 | 2.2806 | 2150 | 0.1556 |
0.1233 | 2.3336 | 2200 | 0.1549 |
0.1383 | 2.3866 | 2250 | 0.1533 |
0.1411 | 2.4397 | 2300 | 0.1535 |
0.1369 | 2.4927 | 2350 | 0.1512 |
0.1342 | 2.5457 | 2400 | 0.1500 |
0.1292 | 2.5988 | 2450 | 0.1480 |
0.1393 | 2.6518 | 2500 | 0.1480 |
0.1281 | 2.7049 | 2550 | 0.1477 |
0.1379 | 2.7579 | 2600 | 0.1456 |
0.1335 | 2.8109 | 2650 | 0.1439 |
0.1356 | 2.8640 | 2700 | 0.1438 |
0.1203 | 2.9170 | 2750 | 0.1427 |
0.1399 | 2.9700 | 2800 | 0.1411 |
0.1162 | 3.0231 | 2850 | 0.1396 |
0.123 | 3.0761 | 2900 | 0.1395 |
0.1 | 3.1291 | 2950 | 0.1390 |
0.1182 | 3.1822 | 3000 | 0.1365 |
0.1043 | 3.2352 | 3050 | 0.1376 |
0.1052 | 3.2883 | 3100 | 0.1354 |
0.1039 | 3.3413 | 3150 | 0.1343 |
0.1101 | 3.3943 | 3200 | 0.1339 |
0.1161 | 3.4474 | 3250 | 0.1340 |
0.1031 | 3.5004 | 3300 | 0.1319 |
0.1044 | 3.5534 | 3350 | 0.1314 |
0.0936 | 3.6065 | 3400 | 0.1307 |
0.1057 | 3.6595 | 3450 | 0.1307 |
0.1103 | 3.7125 | 3500 | 0.1290 |
0.1055 | 3.7656 | 3550 | 0.1283 |
0.1044 | 3.8186 | 3600 | 0.1270 |
0.101 | 3.8717 | 3650 | 0.1259 |
0.1014 | 3.9247 | 3700 | 0.1247 |
0.1113 | 3.9777 | 3750 | 0.1239 |
0.0898 | 4.0308 | 3800 | 0.1270 |
0.0891 | 4.0838 | 3850 | 0.1243 |
0.0869 | 4.1368 | 3900 | 0.1244 |
0.0955 | 4.1899 | 3950 | 0.1227 |
0.0894 | 4.2429 | 4000 | 0.1217 |
0.0871 | 4.2959 | 4050 | 0.1222 |
0.0885 | 4.3490 | 4100 | 0.1212 |
0.0873 | 4.4020 | 4150 | 0.1214 |
0.0873 | 4.4551 | 4200 | 0.1198 |
0.0866 | 4.5081 | 4250 | 0.1208 |
0.0866 | 4.5611 | 4300 | 0.1183 |
0.08 | 4.6142 | 4350 | 0.1177 |
0.0899 | 4.6672 | 4400 | 0.1172 |
0.0798 | 4.7202 | 4450 | 0.1174 |
0.078 | 4.7733 | 4500 | 0.1161 |
0.0763 | 4.8263 | 4550 | 0.1158 |
0.0832 | 4.8793 | 4600 | 0.1159 |
0.0918 | 4.9324 | 4650 | 0.1161 |
0.0799 | 4.9854 | 4700 | 0.1149 |
0.077 | 5.0385 | 4750 | 0.1150 |
0.0769 | 5.0915 | 4800 | 0.1148 |
0.0859 | 5.1445 | 4850 | 0.1151 |
0.0746 | 5.1976 | 4900 | 0.1147 |
0.0729 | 5.2506 | 4950 | 0.1143 |
0.0759 | 5.3036 | 5000 | 0.1144 |
0.0813 | 5.3567 | 5050 | 0.1144 |
0.0663 | 5.4097 | 5100 | 0.1147 |
0.072 | 5.4627 | 5150 | 0.1142 |
0.0743 | 5.5158 | 5200 | 0.1140 |
0.0755 | 5.5688 | 5250 | 0.1139 |
0.0766 | 5.6219 | 5300 | 0.1140 |
0.0701 | 5.6749 | 5350 | 0.1138 |
0.0837 | 5.7279 | 5400 | 0.1137 |
0.0799 | 5.7810 | 5450 | 0.1137 |
0.0797 | 5.8340 | 5500 | 0.1138 |
0.0813 | 5.8870 | 5550 | 0.1138 |
0.0717 | 5.9401 | 5600 | 0.1138 |
0.0746 | 5.9931 | 5650 | 0.1137 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.5.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Zacktree/code-bench-CodeGemma-7B-cgv1-dsv1
Base model
google/codegemma-7b