zephyr-7b-dpo-full / README.md
ZHZisZZ's picture
End of training
6e8fa68 verified
|
raw
history blame
2.89 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5018
  • Rewards/chosen: -1.1027
  • Rewards/rejected: -2.0673
  • Rewards/accuracies: 0.7656
  • Rewards/margins: 0.9646
  • Logps/rejected: -469.4237
  • Logps/chosen: -372.8636
  • Logits/rejected: -0.4162
  • Logits/chosen: -1.1470

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5767 0.21 100 0.5762 -0.5418 -1.0929 0.7148 0.5512 -371.9847 -316.7739 -1.7636 -1.7624
0.5185 0.42 200 0.5312 -1.0541 -1.7947 0.7656 0.7407 -442.1638 -368.0010 -0.6928 -1.0192
0.5166 0.63 300 0.5114 -1.1529 -2.0654 0.7539 0.9125 -469.2292 -377.8804 -0.6568 -1.2977
0.5003 0.84 400 0.5023 -1.0875 -2.0687 0.7695 0.9812 -469.5586 -371.3432 -0.3666 -1.1044

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2