YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

QLoRA+百万数据对baichun-7b模型进行高效指令微调

更多详情请查看Github项目: Firefly(流萤): 中文对话式大语言模型(全量微调+QLoRA)

单轮对话脚本:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = 'YeungNLP/firefly-baichuan-7b-qlora-sft-merge'
max_new_tokens = 500
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.0
device = 'cuda'
input_pattern = '<s>{}</s>'
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    device_map='auto'
)
model.eval()
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
text = input('User:')
while True:
    text = input_pattern.format(text)
    input_ids = tokenizer(text, return_tensors="pt").input_ids
    input_ids = input_ids.to(device)
    outputs = model.generate(
        input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, 
        top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, 
        eos_token_id=tokenizer.eos_token_id
    )
    rets = tokenizer.batch_decode(outputs)
    output = rets[0].strip().replace(text, "").replace('</s>', "")
    print("Firefly:{}".format(output))
    text = input('User:')

多轮对话脚本:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = 'cuda'
model_name = 'YeungNLP/firefly-baichuan-7b1-qlora-sft-merge'
max_new_tokens = 500
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.0
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    device_map='auto'
)
model.eval()
model = model.to(device)
# 记录所有历史记录
history_token_ids = tokenizer('<s>', return_tensors="pt").input_ids
# 输入模型的最大长度
history_max_len = 1000
user_input = input('User:')
while True:
    user_input = '{}</s>'.format(user_input)
    user_input_ids = tokenizer(user_input, return_tensors="pt").input_ids
    history_token_ids = torch.concat((history_token_ids, user_input_ids), dim=1)
    model_input_ids = history_token_ids[:, -history_max_len:].to(device)
    outputs = model.generate(
        input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p,
        temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id
    )
    model_input_ids_len = model_input_ids.size(1)
    response_ids = outputs[:, model_input_ids_len:]
    history_token_ids = torch.concat((history_token_ids, response_ids.cpu()), dim=1)
    response = tokenizer.batch_decode(response_ids)
    print("Firefly:" + response[0].strip().replace('</s>', ""))
    user_input = input('User:')
Downloads last month
21
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.