distilbert-base-uncased-tokenclassification_lora
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2286
- Precision: 0.6655
- Recall: 0.4474
- F1: 0.5351
- Accuracy: 0.9493
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.4882 | 0.0 | 0.0 | 0.0 | 0.9205 |
No log | 2.0 | 426 | 0.4615 | 0.0 | 0.0 | 0.0 | 0.9205 |
0.9185 | 3.0 | 639 | 0.4220 | 0.0 | 0.0 | 0.0 | 0.9205 |
0.9185 | 4.0 | 852 | 0.3565 | 0.0 | 0.0 | 0.0 | 0.9205 |
0.25 | 5.0 | 1065 | 0.3219 | 0.25 | 0.0012 | 0.0024 | 0.9207 |
0.25 | 6.0 | 1278 | 0.3121 | 0.4737 | 0.0323 | 0.0605 | 0.9231 |
0.25 | 7.0 | 1491 | 0.3071 | 0.4783 | 0.0658 | 0.1157 | 0.9256 |
0.1979 | 8.0 | 1704 | 0.3015 | 0.4695 | 0.1196 | 0.1907 | 0.9290 |
0.1979 | 9.0 | 1917 | 0.2841 | 0.4871 | 0.2033 | 0.2869 | 0.9342 |
0.1775 | 10.0 | 2130 | 0.2823 | 0.4932 | 0.2177 | 0.3021 | 0.9349 |
0.1775 | 11.0 | 2343 | 0.2729 | 0.5090 | 0.2703 | 0.3531 | 0.9374 |
0.1691 | 12.0 | 2556 | 0.2731 | 0.5273 | 0.2775 | 0.3636 | 0.9382 |
0.1691 | 13.0 | 2769 | 0.2644 | 0.5660 | 0.3182 | 0.4074 | 0.9402 |
0.1691 | 14.0 | 2982 | 0.2648 | 0.6107 | 0.3134 | 0.4142 | 0.9402 |
0.1546 | 15.0 | 3195 | 0.2611 | 0.6388 | 0.3469 | 0.4496 | 0.9419 |
0.1546 | 16.0 | 3408 | 0.2570 | 0.6409 | 0.3565 | 0.4581 | 0.9431 |
0.1461 | 17.0 | 3621 | 0.2515 | 0.6541 | 0.3732 | 0.4752 | 0.9444 |
0.1461 | 18.0 | 3834 | 0.2461 | 0.6415 | 0.3959 | 0.4896 | 0.9456 |
0.1382 | 19.0 | 4047 | 0.2434 | 0.6452 | 0.4067 | 0.4989 | 0.9463 |
0.1382 | 20.0 | 4260 | 0.2464 | 0.6673 | 0.3983 | 0.4989 | 0.9457 |
0.1382 | 21.0 | 4473 | 0.2429 | 0.6767 | 0.4031 | 0.5052 | 0.9460 |
0.1324 | 22.0 | 4686 | 0.2411 | 0.684 | 0.4091 | 0.5120 | 0.9462 |
0.1324 | 23.0 | 4899 | 0.2336 | 0.6654 | 0.4306 | 0.5229 | 0.9475 |
0.129 | 24.0 | 5112 | 0.2411 | 0.6737 | 0.4175 | 0.5155 | 0.9469 |
0.129 | 25.0 | 5325 | 0.2385 | 0.6901 | 0.4234 | 0.5248 | 0.9473 |
0.1235 | 26.0 | 5538 | 0.2328 | 0.6843 | 0.4330 | 0.5304 | 0.9482 |
0.1235 | 27.0 | 5751 | 0.2343 | 0.6877 | 0.4294 | 0.5287 | 0.9481 |
0.1235 | 28.0 | 5964 | 0.2300 | 0.6649 | 0.4462 | 0.5340 | 0.9488 |
0.1195 | 29.0 | 6177 | 0.2323 | 0.6790 | 0.4378 | 0.5324 | 0.9483 |
0.1195 | 30.0 | 6390 | 0.2351 | 0.6869 | 0.4330 | 0.5312 | 0.9482 |
0.1179 | 31.0 | 6603 | 0.2329 | 0.6811 | 0.4342 | 0.5303 | 0.9482 |
0.1179 | 32.0 | 6816 | 0.2326 | 0.6779 | 0.4330 | 0.5285 | 0.9482 |
0.1156 | 33.0 | 7029 | 0.2326 | 0.6807 | 0.4258 | 0.5239 | 0.9481 |
0.1156 | 34.0 | 7242 | 0.2328 | 0.6870 | 0.4306 | 0.5294 | 0.9481 |
0.1156 | 35.0 | 7455 | 0.2327 | 0.6716 | 0.4354 | 0.5283 | 0.9484 |
0.114 | 36.0 | 7668 | 0.2290 | 0.6614 | 0.4486 | 0.5346 | 0.9492 |
0.114 | 37.0 | 7881 | 0.2275 | 0.6597 | 0.4522 | 0.5366 | 0.9495 |
0.1121 | 38.0 | 8094 | 0.2285 | 0.6643 | 0.4498 | 0.5364 | 0.9493 |
0.1121 | 39.0 | 8307 | 0.2275 | 0.6626 | 0.4533 | 0.5384 | 0.9495 |
0.1113 | 40.0 | 8520 | 0.2323 | 0.6784 | 0.4390 | 0.5330 | 0.9488 |
0.1113 | 41.0 | 8733 | 0.2289 | 0.6715 | 0.4450 | 0.5353 | 0.9491 |
0.1113 | 42.0 | 8946 | 0.2281 | 0.6696 | 0.4510 | 0.5390 | 0.9494 |
0.1111 | 43.0 | 9159 | 0.2284 | 0.6625 | 0.4486 | 0.5350 | 0.9493 |
0.1111 | 44.0 | 9372 | 0.2270 | 0.6591 | 0.4510 | 0.5355 | 0.9495 |
0.1077 | 45.0 | 9585 | 0.2291 | 0.6667 | 0.4474 | 0.5354 | 0.9493 |
0.1077 | 46.0 | 9798 | 0.2289 | 0.6691 | 0.4450 | 0.5345 | 0.9492 |
0.1089 | 47.0 | 10011 | 0.2272 | 0.6591 | 0.4510 | 0.5355 | 0.9495 |
0.1089 | 48.0 | 10224 | 0.2283 | 0.6661 | 0.4486 | 0.5361 | 0.9493 |
0.1089 | 49.0 | 10437 | 0.2286 | 0.6655 | 0.4474 | 0.5351 | 0.9493 |
0.1097 | 50.0 | 10650 | 0.2286 | 0.6655 | 0.4474 | 0.5351 | 0.9493 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 8
Model tree for Yeji-Seong/distilbert-base-uncased-tokenclassification_lora
Base model
distilbert/distilbert-base-uncased