metadata
base_model: darkc0de/XortronCriminalComputingConfig
library_name: transformers
tags:
- mlx
license: apache-2.0
language:
- en
pipeline_tag: text-generation
Xonaz81/XortronCriminalComputingConfig-mlx-6Bit
Because this model seems to be promising and there was no 6-bit version to be found, I decided to create one from the full model weights. This is a normal 6-bit MLX quant. No advanced DWQ quants for now but coming in the future! The original model Xonaz81/XortronCriminalComputingConfig-mlx-6Bit was converted to MLX format from darkc0de/XortronCriminalComputingConfig using mlx-lm
Use with mlx or LM-studio
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Xonaz81/XortronCriminalComputingConfig-mlx-6Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)