Zenith-7B-dpo / README.md
gagan3012's picture
Update README.md
09ac0c5 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - mistral
  - Zenith-7B-dpo
pipeline_tag: text-generation

Model Card for Zenith-7B-dpo

Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper Self-Rewarding Language Models.

image/png

Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.

text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

This format is available as a chat template via the apply_chat_template() method:

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Xenon1/Zenith-7B-dpo")
tokenizer = AutoTokenizer.from_pretrained("Xenon1/Zenith-7B-dpo")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Model Architecture

This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer