llm-course-hw2
Collection
Second homework on VK NLP course.
•
3 items
•
Updated
This model is a fine-tuned version of HuggingFaceTB/SmolLM-135M-Instruct on the HumanLLMs/Human-Like-DPO-Dataset dataset. It is trained as a reward model for PPO using TRL library as a part of homework on VK NLP Course. . The model is of class AutoModelForSequenceClassification with num_labels=1: only last linear layer is trained, and the rest of the model remains unchanged.
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="X1716/llm-course-hw2-reward-model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training logs are available here:
This model was trained with Reward.
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Base model
HuggingFaceTB/SmolLM-135M