PTHQL
Collection
Phylogenetic Tree Hierarquical QLoRAs (PTHQL)
โข
21 items
โข
Updated
This is the Level 2 North Sea Germanic Phylogenetic Tree Hierarquical QLoRAs (PTHQL) adapter from Generating from AMRs into High and Low-Resource Languages using Phylogenetic Knowledge and Hierarchical QLoRA Training (HQL) used for AMR-to-Text generation.
This model is the Level 2 of 4 hierarquical LoRAs. It is strongly adviseable to load all 4 LoRAs in order.
The following is minimal code to generate English text from an AMR graph:
from transformers import MT5ForConditionalGeneration, AutoTokenizer
from peft import PeftModel
model = MT5ForConditionalGeneration.from_pretrained('google/mt5-large')
tokennizer = AutoTokenizer.from_pretrained('google/mt5-large')
model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level0_Indo_European')
model = model.merge_and_unload()
model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level1_Germanic')
model = model.merge_and_unload()
model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level2_North_Sea_Germanic')
model = model.merge_and_unload()
model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_language_English')
model = model.merge_and_unload()
graph = '''
(w / want-01
:ARG0 (b / boy)
:ARG1 (b2 / believe-01
:ARG0 (g / girl)
:ARG1 b))
'''
tokenized_input = tokenizer(graph, return_tensors='pt')
with torch.inference_mode():
prediction = model.generate(**tokenized_input)
generated_text = tokenizer.batch_decode(prediction, skip_special_tokens=True)[0]
print(f'Generated text:', generated_text)
Expected outpu:
The boy wants the girl to believe him.
Base model
google/mt5-large