wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v1

This model is a fine-tuned version of ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8444
  • Accuracy: {'accuracy': 0.8043478260869565}
  • F1: 0.7171
  • Precision: 0.6470
  • Recall: 0.8043

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6556 0.9615 25 0.8356 {'accuracy': 0.8043478260869565} 0.7171 0.6470 0.8043
0.6427 1.9231 50 0.8207 {'accuracy': 0.8043478260869565} 0.7171 0.6470 0.8043
0.612 2.8846 75 0.8447 {'accuracy': 0.8043478260869565} 0.7171 0.6470 0.8043

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Wiam/wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v1

Evaluation results