vivit-b-16x2-finetuned-cctv-surveillance

This model is a fine-tuned version of google/vivit-b-16x2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1478
  • Accuracy: 0.9460
  • F1: 0.9430
  • Recall: 0.9460
  • Precision: 0.9454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4176

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.9564 0.12 522 0.4417 0.8685 0.8096 0.8685 0.7990
0.4574 1.12 1044 0.2633 0.9131 0.9042 0.9131 0.9269
0.421 2.12 1566 0.1875 0.9272 0.9100 0.9272 0.9353
0.4785 3.12 2088 0.1854 0.9249 0.9082 0.9249 0.9140
0.3213 4.12 2610 0.1805 0.9272 0.9125 0.9272 0.9216
0.1465 5.12 3132 0.1733 0.9413 0.9362 0.9413 0.9398
0.0784 6.12 3654 0.1616 0.9437 0.9391 0.9437 0.9434
0.2017 7.12 4176 0.1478 0.9460 0.9430 0.9460 0.9454

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for WasuratS/vivit-b-16x2-finetuned-cctv-surveillance

Finetuned
(1)
this model