albert-large-v1-finetuned-mrpc

This model is a fine-tuned version of albert-large-v1 on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4479
  • Accuracy: 0.8725
  • F1: 0.9075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 69
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 115 0.3323 0.8554 0.8970
No log 2.0 230 0.3164 0.8799 0.9127
No log 3.0 345 0.3368 0.8603 0.9019
No log 4.0 460 0.4099 0.8676 0.9049
0.2727 5.0 575 0.4479 0.8725 0.9075

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train VitaliiVrublevskyi/albert-large-v1-finetuned-mrpc

Evaluation results