c
Test/Mixtral-LoRA-0118
dd60fbe verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
datasets:
  - viggo
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: mixtral-viggo-finetune
    results: []

mixtral-viggo-finetune

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the viggo dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.6845 0.04 50 0.3694
0.2931 0.08 100 0.2794
0.2689 0.12 150 0.2516
0.2524 0.16 200 0.2398
0.2226 0.2 250 0.2268
0.2195 0.24 300 0.2211
0.2081 0.27 350 0.2141
0.2052 0.31 400 0.2085
0.1982 0.35 450 0.2040
0.2004 0.39 500 0.1974
0.1889 0.43 550 0.1931
0.1929 0.47 600 0.1891
0.185 0.51 650 0.1872
0.1925 0.55 700 0.1846
0.1778 0.59 750 0.1885
0.1741 0.63 800 0.1809
0.1746 0.67 850 0.1802
0.1769 0.71 900 0.1792
0.1795 0.74 950 0.1785
0.158 0.78 1000 0.1785

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0